EXERCISE 9.1

Choose the correct answer from the given four options:
Q1. If the radii of two concentric circles are 4 cm and 5 cm , then the length of each chord of one circle which is the tangent to the other circle is
(a) 3 cm
(b) 6 cm
(c) 9 cm
(d) 1 cm

Sol. (b): $\mathrm{C}_{1}, \mathrm{C}_{2}$ are concentric circles with their centre C .
Chord AB of circle C_{2} touches C_{1} at P
$A B$ is tangent at P and $P C$ is radius at P.
So, $C P \perp A B$.
$\Rightarrow \angle \mathrm{P}=90^{\circ}, \quad \mathrm{CP}=4 \mathrm{~cm}$ and $\mathrm{CA}=5 \mathrm{~cm}$ (Given)
\therefore In right angle $\triangle \mathrm{PAC}$,

$$
\begin{aligned}
& \mathrm{AP}^{2}=\mathrm{AC}^{2}-\mathrm{PC}^{2}=5^{2}-4^{2}=25-16=9 \\
\Rightarrow \quad & \mathrm{AP}=3 \mathrm{~cm}
\end{aligned}
$$

Perpendicular from centre to chord bisects the chord.
So, $\mathrm{AB}=2 \mathrm{AP}=2 \times 3=6 \mathrm{~cm}$. Hence, verifies option (b).
Q2. In the given figure, if $\angle \mathrm{AOB}=125^{\circ}$, then $\angle \mathrm{COD}$ is equal to
(a) 62.5°
(b) 45°
(c) 35°
(d) 55°

Sol.(d):We know that a quadrilateral circumscribing a circle subtends supplementary angles at the centre of the circle.

$$
\begin{aligned}
\therefore \quad \angle \mathrm{AOB}+\angle \mathrm{COD} & =180^{\circ} \\
125^{\circ}+\angle \mathrm{COD} & =180^{\circ} \\
\angle \mathrm{COD} & =180^{\circ}-125^{\circ}=55^{\circ} .
\end{aligned}
$$

Hence, verifies option (d).
Q3. In the given figure, $A B$ is a chord of the circle and $A O C$ is its diameter, such that $\angle A C B=50^{\circ}$. If AT is the tangent to the circle at the point A , then \angle BAT is equal to
(a) 65°
(b) 60°
(c) 50°
(d) 40°

Sol. (c): AC is diameter.
$\Rightarrow \quad \angle \mathrm{B}=90^{\circ} \quad(\angle$ in a semi-circle $)$
$\therefore \quad \angle \mathrm{BAC}=180^{\circ}-\angle \mathrm{C}-\angle \mathrm{B} \quad$ [Angle sum property of a triangle]
$\Rightarrow \angle B A C=180^{\circ}-50^{\circ}-90^{\circ}=180^{\circ}-140^{\circ}=40^{\circ}$

Tangent AT at A and radius OA at A arc at 90°.
So, $\quad \angle \mathrm{OAT}=90^{\circ}$
$\therefore \quad \angle \mathrm{OAB}+\angle \mathrm{BAT}=90^{\circ}$
$\Rightarrow \quad 40^{\circ}+\angle B A T=90^{\circ}$
$\Rightarrow \quad \angle B A T=90^{\circ}-40^{\circ}$
$\Rightarrow \quad \angle B A T=50^{\circ}$.
Hence, verifies option (c).
Q4. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm , the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral $P Q O R$ is
(a) $60 \mathrm{~cm}^{2}$
(b) $65 \mathrm{~cm}^{2}$
(c) $30 \mathrm{~cm}^{2}$
(d) $32.5 \mathrm{~cm}^{2}$

Sol. (a): PQ is tangent and QO is radius at contact point Q .
$\therefore \quad \angle \mathrm{PQO}=90^{\circ}$
\therefore By Pythagoras theorem,

$$
\begin{array}{rlrl}
\mathrm{PQ}^{2} & =\mathrm{OP}^{2}-\mathrm{OQ}^{2} \\
& & =13^{2}-5^{2}=169-25=144 \\
\Rightarrow & \mathrm{PQ} & =12 \mathrm{~cm} \\
\therefore & \Delta \mathrm{OPQ} & \cong \Delta \mathrm{OPR}
\end{array}
$$

$\therefore \quad$ Area of $\triangle \mathrm{OPQ}=$ ar $\triangle \mathrm{OPR}$
Area of quadrilateral QORP $=2$ ar $(\Delta \mathrm{OPR})$

$$
\begin{aligned}
& =2 \times \frac{1}{2} \text { base } \times \text { altitude } \\
& =\mathrm{RP} \times \mathrm{OR}=12 \times 5=60 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, verifies the option (a).
Q5. At one end A of diameter AB of a circle of radius 5 cm , tangent XAY is drawn to the circle. The length of the chord CD parallel to XY and at a distance 8 cm from A is
(a) 4 cm
(b) 5 cm
(c) 6 cm
(d) 8 cm

Sol. (d): XAY is tangent and AO is radius at contact point A of circle.

$$
\begin{array}{rlrl}
\mathrm{AO} & =5 \mathrm{~cm} \\
\therefore & \angle \mathrm{OAY} & =90^{\circ}
\end{array}
$$

CD is another chord at distance (perpendicular) of 8 cm from A and CMD II XAY meets AB at M.

Join OD.

$$
\begin{aligned}
& \mathrm{OD}=5 \mathrm{~cm} \\
& \mathrm{OM}=8-5=3 \mathrm{~cm}
\end{aligned}
$$

$\angle \mathrm{OMD}=\angle \mathrm{OAY}=90^{\circ}$ Now, in right angled $\triangle \mathrm{OMD}$,
$\mathrm{MD}^{2}=\mathrm{OD}^{2}-\mathrm{MO}^{2}=5^{2}-3^{2}=25-9=16$
$\Rightarrow \quad M D=4 \mathrm{~cm}$

Perpendicular from centre O of circle bisect the chord. So $C D=2 M D$ $=2 \times 4=8 \mathrm{~cm}$.
Hence, length of chord $\mathrm{CD}=8 \mathrm{~cm}$, which verifies option (d).
Q6. In the given figure, AT is a tangent to the circle with centre ' O ' such that $\mathrm{OT}=4 \mathrm{~cm}$ and $\angle \mathrm{OTA}=30^{\circ}$. Then AT is equal to
(a) 4 cm
(b) 2 cm
(c) $2 \sqrt{3} \mathrm{~cm}$ (d) $4 \sqrt{3} \mathrm{~cm}$

Sol. (c): Join OA. OA is
 radius and AT is tangent at contact point A .
So, $\quad \angle \mathrm{OAT}=90^{\circ}, \mathrm{OT}=4 \mathrm{~cm}$
[Given]

Now, $\frac{\text { AT }}{4}=\frac{\text { Base }}{\text { Hypotenuse }}=\cos 30^{\circ} \Rightarrow \mathrm{AT}=4 \times \frac{\sqrt{3}}{2}=2 \sqrt{3} \mathrm{~cm}$.
Hence, verifies the option (c).
Q7. In the given figure, ' O ' is the centre of circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ , then $\angle \mathrm{POQ}$ is equal to
(a) 100°
(b) 80°
(c) 90°
(d) 75°

Sol. (a): OP is radius and PR is tangent at P .
So,

$$
\angle \mathrm{OPR}=90^{\circ}
$$

$\Rightarrow \quad \angle \mathrm{OPQ}+50^{\circ}=90^{\circ}$

$$
\Rightarrow \quad \angle \mathrm{OPQ}=90^{\circ}-50^{\circ}
$$

$$
\Rightarrow \quad \angle \mathrm{OPQ}=40^{\circ}
$$

In $\triangle \mathrm{OPQ}$,

$$
\begin{array}{rlrl}
& & \mathrm{OP}= & \mathrm{OQ} \\
& & \angle \mathrm{Q} & =\angle \mathrm{OPQ}=40^{\circ} \\
& & \quad \text { Angles opposite to equal sides are equal] } \\
\text { But, } & \angle \mathrm{POQ} & =180^{\circ}-\angle \mathrm{P}-\angle \mathrm{Q} \\
& & =180^{\circ}-40^{\circ}-40^{\circ}=180^{\circ}-80^{\circ}=100^{\circ} \\
\Rightarrow & \angle \mathrm{POQ} & =100^{\circ} .
\end{array}
$$

Hence, verifies the option (a).

Q8. In the given figure, if PA and PB are tangents to the circle with centre O such that $\angle A P B=50^{\circ}$, then $\angle \mathrm{OAB}$ is equal to
(a) 25°
(b) 30°
(c) 40°
(d) 50°

Sol. (a): In $\triangle \mathrm{OAB}$, we have

$$
\mathrm{OA}=\mathrm{OB}
$$

[Radii of same circle]
$\therefore \quad \angle \mathrm{OAB}=\angle \mathrm{OBA} \quad$ [Angles opposite to equal sides are equal]
As OA and PA are radius and tangent respectively at contact point A.
So, $\angle \mathrm{OAP}=90^{\circ}$. Similarly, $\angle \mathrm{OBP}=90^{\circ}$
Now, in quadrilateral PAOB ,

$\Rightarrow \quad 50^{\circ}+90^{\circ}+\angle \mathrm{O}+90^{\circ}=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{O}=360^{\circ}-90^{\circ}-90^{\circ}-50^{\circ}$
$\Rightarrow \quad \angle \mathrm{O}=130^{\circ}$
Again, in $\triangle \mathrm{OAB}$,

$$
\angle \mathrm{O}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ}
$$

$\Rightarrow \quad 130^{\circ}+\angle \mathrm{OAB}+\angle \mathrm{OAB}=180^{\circ} \quad[\because \angle \mathrm{OBA}=\angle \mathrm{OAB}]$
$\Rightarrow \quad 2 \angle \mathrm{OAB}=180^{\circ}-130^{\circ}=50^{\circ}$
$\Rightarrow \quad \angle \mathrm{OAB}=25^{\circ}$
Hence, $\angle \mathrm{OAB}=25^{\circ}$ which verifies option (a).
Q9. If two tangents inclined at an angle 60° are drawn to a circle of radius 3 cm , then the length of each tangent is equal to
(a) $\frac{3}{2} \sqrt{3} \mathrm{~cm}$
(b) 6 cm
(c) 3 cm
(d) $3 \sqrt{3} \mathrm{~cm}$

Sol. (d): $\because \mathrm{OA}$ and PA are the radius and the tangent respectively at contact point A of a circle of radius $\mathrm{OA}=3 \mathrm{~cm}$. So, $\angle \mathrm{PAO}=90^{\circ}$.
In right angled $\triangle \mathrm{POA}$,

$$
\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{PA}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{3}{\mathrm{PA}}
$$

$\Rightarrow \quad P A=3 \sqrt{3}$ which verifies the option (d).

Q10. In the given figure, if PQR is the tangent to a circle at Q, whose centre is $O, A B$ is a chord parallel to PR and $\angle \mathrm{BQR}=70^{\circ}$, then $\angle \mathrm{AQB}$ is equal to
(a) 20°
(b) 40°
(c) 35°
(d) 45°

Sol. (b): AB II PQR
[Given]

$$
\angle \mathrm{B}=\angle \mathrm{BQR}=70^{\circ}
$$

[Alternate interior angles] and $\angle \mathrm{OQR}=\angle \mathrm{AMQ}$ [Alternate interior angles] As PQR and OQ are tangent and radius at contact point Q
$\therefore \quad \angle \mathrm{OQR}=90^{\circ}$
$\Rightarrow \quad \angle 1+\angle 70^{\circ}=90^{\circ}$
$\Rightarrow \quad \angle 1=90^{\circ}-70^{\circ}=20^{\circ}$
$\therefore \angle \mathrm{AMO}=90^{\circ}$ and perpendicular from centre
 to chord bisect the chord
So,

$$
\mathrm{MA}=\mathrm{MB}
$$

$\angle \mathrm{QMA}=\angle \mathrm{QMB}$
$M Q=M Q$
[Each 90°]
[Common]
$\therefore \quad \triangle \mathrm{QMA} \cong \triangle \mathrm{QMB}$
[By SAS criterion of congruence]
$\Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{B}$
$\Rightarrow \quad \angle \mathrm{A}=70^{\circ} \quad\left[\because \angle \mathrm{B}=70^{\circ}\right]$
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{AMQ}+\angle 2=180^{\circ}$ [Angle sum property of a triangle]
$\Rightarrow \quad 70^{\circ}+90^{\circ}+\angle 2=180^{\circ}$
$\Rightarrow \quad \angle 2=180^{\circ}-160^{\circ}$
$\Rightarrow \quad \angle 2=20^{\circ}$
$\therefore \quad \angle \mathrm{AQB}=\angle 1+\angle 2=20^{\circ}+20^{\circ}=40^{\circ}$
Hence, verifies option (b).

EXERCISE 9.2

Write True or False and justify your answer in each of the following:
Q1. If a chord $A B$ subtends an angle of 60° at the centre of a circle, then the angle between the tangents at A and B is also 60°.
Sol. False: Chord AB subtends $\angle 60^{\circ}$ at O . $\therefore \mathrm{AP}$ and OA are tangent and radius at A.
$\therefore \quad \angle \mathrm{OAP}=90^{\circ}$
Similarly, $\quad \angle \mathrm{OBP}=90^{\circ}$
In quadrilateral OAPB,

$$
\begin{array}{rlrl}
& & \angle \mathrm{O}+\angle \mathrm{P}+\angle \mathrm{OAP}+\angle \mathrm{OBP} & =360^{\circ} \\
\Rightarrow & 60^{\circ}+\angle \mathrm{P}+90^{\circ}+90^{\circ} & =360^{\circ} \\
\Rightarrow & & \angle \mathrm{P}=360^{\circ}-240^{\circ} \\
\Rightarrow & & \angle \mathrm{P}=120^{\circ}
\end{array}
$$

Hence, the given statement is false.
Q2. The length of tangent from an external point on a circle is always greater than the radius of the circle.
Sol. False: Consider any point P external to a circle away from O .
Now, draw tangent PA on the circle. Clearly,

PA $>r[\because \mathrm{P}$ is external to circle and P is at sufficient distance]

Now, again consider any point P_{1} on the tangent AP very near to contact point A of tangent $\mathrm{PA}, \mathrm{P}_{1} \mathrm{~A}<\mathrm{AO}$
So, it is clear that the length of the tangent PA and $\mathrm{P}_{1} \mathrm{~A}$ are greater and smaller respectively than radius OA.
Hence, the length of the tangent from an external point of a circle may or may not be greater than the radius of the circle. Hence, the given statement is false.
Q3. The length of the tangent from an external point P on a circle with centre O is always less than OP.

Sol. True:

PT and OT are the tangent and radius respectively at contact point T.
So, $\quad \angle \mathrm{OTP}=90^{\circ}$
$\Rightarrow \Delta \mathrm{OPT}$ is right angled triangle.
Again, in $\triangle \mathrm{OPT}$
$\because \quad \angle \mathrm{T}>\angle \mathrm{O}$

OP > PT
[Side opposite to greater angle is larger] Hence, the given statement is true.
Q4. The angle between two tangents to a circle may be 0°.
Sol. True:
Consider the diameter POQ of a circle with centre O . The tangent at P and Q are drawn, as we know the radius and tangent at contact point are perpendicular so $\angle 1=\angle 2=90^{\circ}$. These

are alternate angles so the tangent $\mathrm{APB} \| \mathrm{CQD}$ i.e., angle between two tangents to a circle may be zero.
Hence, the given statement is true.
Q5. If the angle between two tangents drawn from a point P to a circle of radius ' a ' and centre O is 90°, then OP $=a \sqrt{2}$.
Sol. True.
Consider a tangent PT from an external point P on a circle with radius ' a '.
OT and PT are radius and tangent respectively at contact point T .
$\therefore \quad \angle \mathrm{T}=90^{\circ}$
As $\quad \Delta \mathrm{OPT} \cong \Delta \mathrm{OPR}$

$\therefore \quad \angle \mathrm{OPT}=\angle \mathrm{OPR}=\frac{90^{\circ}}{2}=45^{\circ}$
\therefore In right angle $\triangle \mathrm{OPT}$,

$$
\begin{aligned}
& & \sin 45^{\circ} & =\frac{\mathrm{OT}}{\mathrm{OP}} \\
& \Rightarrow & \frac{1}{\sqrt{2}} & =\frac{a}{\mathrm{OP}} \\
\Rightarrow & & \mathrm{OP} & =\sqrt{2} a .
\end{aligned}
$$

[By SSS criterion of congruence]

Hence, the given statement is true.
Q6. If the angle between two tangents drawn from a point P to a circle of radius ' a ' and centre O is 60°, then $\mathrm{OP}=a \sqrt{3}$.
Sol. False: PT and OT are tangent and radius respectively at contact point T.
$\therefore \quad \angle \mathrm{OTP}=90^{\circ}$
$\Rightarrow \Delta \mathrm{OTP}$ is right angle Δ at T
As $\quad \Delta \mathrm{OPT} \cong \triangle \mathrm{OPR}$
[By SSS criterion of congruence]

$\Rightarrow \quad \angle \mathrm{OPT}=\angle \mathrm{OPR}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
\therefore In right angle $\Delta \mathrm{OPT}$,

$$
\sin 30^{\circ}=\frac{\mathrm{OT}}{\mathrm{OP}} \Rightarrow \frac{1}{2}=\frac{a}{\mathrm{OP}} \Rightarrow \mathrm{OP}=2 a
$$

Hence, the given statement is false.
Q7. The tangent to the circumcircle of an isosceles $\triangle \mathrm{ABC}$ at A , in which $A B=A C$, is parallel to $B C$.

Sol. True.
A $\triangle A B C$, inscribed in a circle in which $\mathrm{AB}=\mathrm{AC}$.
PAQ is tangent at A .
$A B$ is chord.
$\therefore \quad \angle \mathrm{PAB}=\angle \mathrm{C}$
\because Angle $\angle \mathrm{PAB}$ formed by chord (AB) with tangent is equal to the angle $\angle \mathrm{C}$ formed by chord
 $A C$ in alternate segment.
In $\triangle \mathrm{ABC}$,

$$
\mathrm{AB}=\mathrm{AC}
$$

[Given]
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{C}[\because$ Angles opposite to equal sides are equal $] \ldots(i i)$
From (i) and (ii), $\angle \mathrm{B}=\angle \mathrm{PAB}$
These are alternate interior angles.
So, PAQ \| BC
Hence, the given statement is true.
Q8. If a number of circles touch a given line segment PQ at a point A , then their centres lies on the perpendicular bisector of PQ .
Sol. False:
$\mathrm{C}_{1} \mathrm{~A}$ and PAQ are radius and tangent at contact point A .
$\therefore \quad \angle \mathrm{C}_{1} \mathrm{AP}=90^{\circ} \Rightarrow \mathrm{C}_{1} \mathrm{~A} \perp \mathrm{PQ}$
Similarly, $\angle \mathrm{C}_{2} \mathrm{AP}=90^{\circ} \Rightarrow \mathrm{C}_{2} \mathrm{~A} \perp \mathrm{PQ}$

$$
\angle \mathrm{C}_{3} \mathrm{AP}=90^{\circ} \Rightarrow \mathrm{C}_{3} \mathrm{~A} \perp \mathrm{PQ}
$$

We know that perpendicular on any point of a segment $P Q$ may be only one.

So, point segments $C_{1} A, C_{2} A, C_{3} A, C_{4} A, \ldots$ will be on a line.
$\Rightarrow \mathrm{C}_{1} \mathrm{~A}, \mathrm{C}_{2} \mathrm{~A}, \mathrm{C}_{3} \mathrm{~A}, \mathrm{C}_{4} \mathrm{~A}$ will lie on a line, which is perpendicular on PQ at A.
As A is not mid point of PQ . So, the perpendicular AB will not be perpendicular bisector of PQ .
Hence, the given statement is false.
Q9. If a number of circles pass through the end points P and Q of a line segment $P Q$, then their centres lie on the perpendicular bisector of PQ .
Sol. True: Centre of any circle passing through the end points P and Q of a line segment are equidistant from P and Q .

$$
\therefore \quad \begin{aligned}
\mathrm{A}_{1} \mathrm{P} & =\mathrm{A}_{1} \mathrm{Q} \\
\mathrm{~A}_{2} \mathrm{P} & =\mathrm{A}_{2} \mathrm{Q} \\
\mathrm{~A}_{3} \mathrm{P} & =\mathrm{A}_{3} \mathrm{Q}
\end{aligned}
$$

as we know that any point on perpendicular bisector of a segment is equidistant from the end points of the segment. Hence, $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ points are the centres of circles passing through the end points P and Q of a segment $P Q$ or the centres of circles lie on the perpendicular bisector of PQ.

Q10. AB is a diameter of a circle and AC is its chord such that $\angle \mathrm{BAC}=30^{\circ}$. If the tangent at C intersects AB extended at D , then $\mathrm{BC}=\mathrm{BD}$.
Sol. True:
$C D$ is a tangent at contact point C. AOB is diameter which meets tangent produced at D.
Chord AC makes $\angle \mathrm{A}=30^{\circ}$ with diameter AB.
To prove: $\quad B D=B C$
Proof: In $\triangle \mathrm{OAC}$,

$\mathrm{OA}=\mathrm{OC}=r$ [Radii of same circle]
$\angle 1=\angle \mathrm{A} \quad[\angle$ s opp. to equal sides are equal]
$\Rightarrow \quad \angle 1=30^{\circ} \quad\left[\because \angle A=30^{\circ}\right]$
Exterior $\angle \mathrm{BOC}=\angle 2=\angle 1+\angle \mathrm{A}=\left(30^{\circ}+30^{\circ}\right)=60^{\circ}$
Now, in $\triangle \mathrm{OCB}$,

$$
\mathrm{OC}=\mathrm{OB}
$$

[Radii of same circle]
$\therefore \quad \angle 3=\angle 4$ [Angles opposite to equal sides are equal] $\angle 3+\angle 4+\angle \mathrm{COB}=180^{\circ}$
$\Rightarrow \quad \angle 3+\angle 3+60^{\circ}=180^{\circ} \quad$ [Angle sum property of triangle]
$\Rightarrow \quad 2 \angle 3=180^{\circ}-60^{\circ}=120^{\circ}$
$\Rightarrow \quad \angle 3=60^{\circ}=\angle 4$
$\angle 6+\angle 4=180^{\circ}$
$\Rightarrow \quad \angle 6=180^{\circ}-\angle 4$

$$
=180^{\circ}-60^{\circ}
$$

$\Rightarrow \quad \angle 6=120^{\circ}$
\because Tangent CD and radius CO are at contact point C.

$$
\begin{aligned}
\therefore & \angle \mathrm{OCD} & =90^{\circ} \\
\Rightarrow & \angle 3+\angle 5 & =90^{\circ} \\
\Rightarrow & 60^{\circ}+\angle 5 & =90^{\circ} \\
\Rightarrow & \angle 5 & =30^{\circ}
\end{aligned}
$$

Now, in $\triangle B C D$, we have

$$
\begin{array}{rlrl}
& & \angle \mathrm{D}+\angle 5+\angle 6 & =180^{\circ} \quad \text { [Angle sum property of a triangle] } \\
\Rightarrow & & \angle \mathrm{D} & =180^{\circ}-\angle 5-\angle 6 \\
& & =180^{\circ}-30^{\circ}-120^{\circ}=180^{\circ}-150^{\circ} \\
\Rightarrow & \angle \mathrm{D} & =30^{\circ} \\
\Rightarrow & \angle \mathrm{D} & =\angle 5=30^{\circ} \\
\Rightarrow & & \mathrm{BC} & =\mathrm{BD}
\end{array}
$$

[Sides opposite to equal $\angle \mathrm{s}$ of a triangle are equal]
Hence, verifies the given statement true.

EXERCISE 9.3

Q1. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.
Sol. Given: Two concentric circles C_{1} and C_{2} with centre O .
Chord AC of circle C_{2} is tangent of circle C_{1} at B.
We know that tangent AC and radius BO at point B are perpendicular. \therefore Perpendicular from centre to chord bisects the chord.

$$
\therefore \quad \mathrm{AB}=\mathrm{CB}=\frac{\mathrm{AC}}{2}=\frac{8}{2}=4 \mathrm{~cm}
$$

In right angle $\triangle \mathrm{ABO}$,

$$
\mathrm{OB}^{2}=\mathrm{OA}^{2}-\mathrm{AB}^{2}
$$

[By Pythagoras theorem]

$$
=5^{2}-4^{2}=25-16=9
$$

$\Rightarrow \quad \mathrm{OB}=3 \mathrm{~cm}$

Hence, radius of circle C_{1} is 3 cm .
Q2. Two tangents $P Q$ and $P R$ are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.
Sol. Given: Tangents PR and PQ from an external point P to a circle with centre O.
To prove: Quadrilateral QORP is cyclic. Proof: RO and RP are the radius and tangent respectively at contact point R.

$\therefore \quad \angle \mathrm{PRO}=90^{\circ}$
Similarly, $\quad \angle \mathrm{PQO}=90^{\circ}$
In quadrilateral QORP, we have

$$
\begin{aligned}
& \angle \mathrm{P}+\angle \mathrm{R}+\angle \mathrm{O}+\angle \mathrm{Q} & =360^{\circ} \\
\Rightarrow & \angle \mathrm{P}+\angle 90^{\circ}+\angle \mathrm{O}+\angle 90^{\circ} & =360^{\circ} \\
\Rightarrow & \angle \mathrm{P}+\angle \mathrm{O} & =360^{\circ}-180^{\circ}=180^{\circ}
\end{aligned}
$$

These are opposite angles of quadrilateral QORP and are supplementary.
\therefore Quadrilateral QORP is cyclic. Hence, proved.

Q3. If from an external point B of a circle with centre ' O ', two tangents $B C, B D$ are drawn such that $\angle D B C=120^{\circ}$, prove that

$$
\mathrm{BC}+\mathrm{BD}=\mathrm{BO}, \text { i.e., } \mathrm{BO}=2 \mathrm{BC}
$$

Sol. Given: A circle with centre O.
Tangents BC and BD are drawn from an external point B such that $\angle \mathrm{DBC}=120^{\circ}$.

$$
\begin{aligned}
& \text { i.e., } \mathrm{BC} \\
& \text { i.e., } \mathrm{BO}= \\
& \text { ad OD. } \\
& \text { ve have }
\end{aligned}
$$

To prove: $\quad \mathrm{BC}+\mathrm{BD}=\mathrm{BO}$, i.e., $\mathrm{BO}=2 \mathrm{BC}$
Construction: Join OB, OC and OD.
Proof: In $\triangle \mathrm{OBC}$ and $\triangle \mathrm{OBD}$, we have
$O C$ and $B C$ are radius and tangent respectively at contact point C.
So, $\quad \angle \mathrm{OCB}=90^{\circ}$
Now, in right angle $\triangle \mathrm{OCB}, \angle \mathrm{OBC}=60^{\circ}$

$$
\begin{aligned}
\therefore & \cos 60^{\circ} & =\frac{\mathrm{BC}}{\mathrm{BO}} \\
\Rightarrow & \frac{1}{2} & =\frac{\mathrm{BC}}{\mathrm{BO}} \\
\Rightarrow & \mathrm{OB} & =2 \mathrm{BC}
\end{aligned}
$$

Hence, proved (ii) part.
$\Rightarrow \quad \mathrm{OB}=\mathrm{BC}+\mathrm{BC}$
$\Rightarrow \quad \mathrm{OB}=\mathrm{BC}+\mathrm{BD} \quad[\because \mathrm{BC}=\mathrm{BD}$ from $(i)]$
Hence, proved.
Q4. Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines.
Sol. Given: Two intersecting lines AT and BT intersect at T. A circle with centre O touches the above lines at A and B.
To prove: OT bisects the $\angle A T B$. Construction: Join OA and OB. Proof: OA is radius and AT is tangent at A .

$$
\begin{align*}
& \mathrm{OB}=\mathrm{OB} \\
& O C=O D \\
& B C=B D \\
& \text { [Tangents from an external point } \\
& \therefore \quad \triangle \mathrm{OBC} \cong \triangle \mathrm{OBD} \quad \text { [By SSS criterion of congruence] } \tag{i}\\
& \Rightarrow \quad \angle \mathrm{OBC}=\angle \mathrm{OBD} \\
& \text { (СРСТ) } \\
& \therefore \quad \angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{DBC}=\frac{1}{2} \times 120^{\circ} \quad\left[\because \angle \mathrm{CBD}=120^{\circ} \text { given }\right] \\
& \Rightarrow \quad \angle \mathrm{OBC}=60^{\circ}
\end{align*}
$$

$$
\therefore \quad \angle \mathrm{OAT}=90^{\circ}
$$

Similarly, $\quad \angle \mathrm{OBT}=90^{\circ}$
In \triangle OTA and $\triangle \mathrm{OTB}$, we have

$$
\begin{array}{rlrl}
\angle \mathrm{OAT} & =\angle \mathrm{OBT}=90^{\circ} \\
& & \mathrm{OT} & =\mathrm{OT} \\
& & \text { [Common] } \\
\therefore & \mathrm{OA} & =\mathrm{OB} & \text { [Radii of same circle] } \\
\Rightarrow & \triangle \mathrm{OTA} & \cong \triangle \mathrm{OTB} & \text { [By RHS criterion of congruence] } \\
\Rightarrow & \angle \mathrm{OTA} & =\angle \mathrm{OTB} &
\end{array}
$$

\Rightarrow Centre of circle ' O ' lies on the angle bisector of $\angle \mathrm{ATB}$.
Hence, proved.
Q5. In the given figure, AB and CD are common tangents to two circles of unequal radii. Prove that $A B=C D$.

Sol. Given: Circles C_{1} and C_{2} of radii r_{1} and r_{2} respectively and $r_{1}<r_{2}$. $A B$ and $C D$ are two common tangents.
To prove: $A B=C D$
Construction: Produce AB and $C D$ upto point P where both tangents meet.
Proof: Tangents from an external point to a circle are equal.

For circle C_{1},

$$
\begin{equation*}
\mathrm{PB}=\mathrm{PD} \tag{i}
\end{equation*}
$$

and for circle $\mathrm{C}_{2}, \quad \mathrm{PA}=\mathrm{PC}$
Subtracting (i) from (ii), we have

$$
\begin{equation*}
\mathrm{PA}-\mathrm{PB}=\mathrm{PC}-\mathrm{PD} \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad A B=C D$.
Hence, proved.
Q6. In Question 5 above, if radii of the two circles are equal, prove that $A B=C D$.

Sol. Given: Two circles of equal radii, two commontangents, AB and $C D$ on circles C_{1} and C_{2}.
To prove: $\mathrm{AB}=\mathrm{CD}$
Construction: Join $\mathrm{O}_{1} \mathrm{~A}, \mathrm{O}_{1} \mathrm{C}$ and $\mathrm{O}_{2} \mathrm{~B}$ and $\mathrm{O}_{2} \mathrm{D}$. Also, join $\mathrm{O}_{1} \mathrm{O}_{2}$.

Proof: Since tangent at any point of a circle is perpendicular to the radius to the point of contact.
$\therefore \quad \angle \mathrm{O}_{1} \mathrm{AB}=\angle \mathrm{O}_{2} \mathrm{BA}=90^{\circ}$
As $\mathrm{O}_{1} \mathrm{~A}=\mathrm{O}_{2} \mathrm{~B}$, so $\mathrm{O}_{1} \mathrm{ABO}_{2}$ is a rectangle.
Since opposite sides of a rectangle are equal,

$$
\begin{equation*}
\therefore \quad \mathrm{AB}=\mathrm{O}_{1} \mathrm{O}_{2} \tag{i}
\end{equation*}
$$

Similarly, we can prove that $\mathrm{O}_{1} \mathrm{CDO}_{2}$ is a rectangle.
$\therefore \quad \mathrm{O}_{1} \mathrm{O}_{2}=\mathrm{CD}$
From (i) and (ii), we get

$$
\begin{equation*}
\mathrm{AB}=\mathrm{CD} \tag{ii}
\end{equation*}
$$

Hence, proved.
Q7. In the given figure, common tangents AB and CD to two circles intersect at E. Prove that $A B=C D$.

Sol. Given: Two non-intersecting circles are shown in the figure. Two intersecting tangents AB and CD intersect at E . E point is between the circles and outside also.
To prove: $A B=C D$
Proof: We know that tangents drawn from an external point (E) to a circle are equal. Point E is outside of both the circles.
So,

$$
\begin{align*}
\mathrm{EA} & =\mathrm{EC} \tag{i}\\
\mathrm{~EB} & =\mathrm{ED} \tag{ii}\\
\mathrm{~EB} & =\mathrm{EC} \\
\mathrm{AB} & =\mathrm{CD}
\end{align*}
$$

$\Rightarrow \quad \mathrm{EA}+\mathrm{EB}=\mathrm{EC}+\mathrm{ED}$
$\Rightarrow \quad \mathrm{AB}=\mathrm{CD}$
[Adding (i) and (ii)]
Hence, proved.
Q8. A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.

Sol. Given: In a circle a chord PQ and a tangent MRN at R such that QP \| MRN
To prove: R bisects the arc PRQ.
Construction: Join RP and RQ.
Proof: Chord RP subtends $\angle 1$ with tangent MN and $\angle 2$ in alternate segment of circle so $\angle 1=\angle 2$. MRN II PQ
$\therefore \quad \angle 1=\angle 3 \quad$ [Alternate interior angles]

$\Rightarrow \quad \angle 2=\angle 3$
$\Rightarrow \quad \mathrm{PR}=\mathrm{RQ} \quad$ [Sides opp. to equal $\angle \mathrm{s}$ in $\triangle \mathrm{RPQ}$]
\because Equal chords subtend equal arcs in a circle so $\operatorname{arc} P R=\operatorname{arc} R Q$
or R bisect the arc PRQ. Hence, proved.
Q9. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.
Sol. Given: A chord AB of a circle, tangents AP and BP at A and B respectively are drawn.
To prove: $\angle \mathrm{PAB}=\angle \mathrm{PBA}$
Proof: We know that tangents drawn from an external point P to a circle are equal so $\mathrm{PA}=\mathrm{PB}$.
$\angle \Rightarrow 2=\angle 1$
[Angles opposite to equal sides of a triangle are equal]
 Hence, tangents PA and PB make equal angles with chord AB. Hence, proved.
Q10. Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at the point A.
Sol. Given: A circle with centre O and AOB is diameter.
CAD is a tangent at A. Chord EF I I tangent CAD To prove: AB bisects any chord EF II CAD.
Proof: OA radius is perpendicular to tangent CAD.

$$
\therefore \quad \angle 1=90^{\circ}
$$

CAD \| EF
[Given]

$\therefore \quad \angle 1 \angle=2=90^{\circ}$ [Alternate interior angles]
Point M is on diameter which passes through centre O .
\because Perpendicular drawn from centre to chord bisect the chord. Hence, AB bisects any chord EF IICAD.

EXERCISE 9.4

Q1. If a hexagon $A B C D E F$ circumscribe a circle, then prove that

$$
\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}
$$

Sol. Given: A circle inscribed in a hexagon ABCDEF . Sides, AB, BC, CD, DE and DF touches the circle at $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ and U respectively.
To prove: $\mathrm{AB}+\mathrm{CD}+\mathrm{EF}=\mathrm{BC}+\mathrm{DE}+\mathrm{FA}$
Proof: We know that tangents from an external point to a circle are equal.
Here, vertices of hexagon are outside the circle so

$$
\begin{aligned}
\mathrm{AP} & =\mathrm{AU} \\
\mathrm{BP} & =\mathrm{BQ} \\
\mathrm{CQ} & =\mathrm{CR} \\
\mathrm{DR} & =\mathrm{DS} \\
\mathrm{ES} & =\mathrm{ET} \\
\mathrm{FT} & =\mathrm{FU} \\
\mathrm{LHS}=\mathrm{AB}+\mathrm{CD}+\mathrm{EF} & =(\mathrm{AP}+\mathrm{PB})+(\mathrm{DR}+\mathrm{CR})+(\mathrm{ET}+\mathrm{TF})
\end{aligned}
$$

By using above results, we have

$$
\begin{aligned}
\mathrm{LHS}=\mathrm{AB}+\mathrm{CD}+\mathrm{EF} & =\mathrm{AU}+\mathrm{BQ}+\mathrm{DS}+\mathrm{CQ}+\mathrm{ES}+\mathrm{FU} \\
& =\mathrm{AU}+\mathrm{FU}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}+\mathrm{ES} \\
& =\mathrm{AF}+\mathrm{BC}+\mathrm{DE} .
\end{aligned}
$$

Hence, proved.
Q2. Let s denotes the semi-perimeter of a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=a, \mathrm{CA}=b$, $\mathrm{AB}=c$. If a circle touches the sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ at $\mathrm{D}, \mathrm{E}, \mathrm{F}$ respectively, prove that $\mathrm{BD}=s-b$.
Sol. Given: A circle inscribed in $\triangle \mathrm{ABC}$ touches the sides $B C, C A$ and $A B$ at D, E, F respectively.
To prove: $\mathrm{BD}=s-b$
Proof: Tangents drawn from an external point to the circle are equal. Vertices of $\triangle \mathrm{ABC}$ are in the exterior of circle. So,

$$
\mathrm{AF}=\mathrm{AE}=x
$$

$$
\mathrm{BF}=\mathrm{BD}=y
$$

$$
C D=C E=z
$$

Now,

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=c+a+b
$$

$$
\Rightarrow \mathrm{AF}+\mathrm{BF}+\mathrm{BD}+\mathrm{DC}+\mathrm{AE}+\mathrm{CE}=a+b+c
$$

$$
\Rightarrow \quad x+y+y+z+x+z=a+b+c
$$

$$
\Rightarrow \quad 2 x+2 y+2 z=a+b+c
$$

$$
\Rightarrow \quad 2(x+y+z)=a+b+c
$$

$$
\Rightarrow \quad x+y+z=\frac{a+b+c}{2}
$$

$\begin{aligned} \Rightarrow & x+y+z & =s \\ \Rightarrow & y & =s-(x+z) \Rightarrow y=s-x-z \\ \Rightarrow & y & =s-(\mathrm{AE}+\mathrm{EC}) \\ \Rightarrow & & =s-\mathrm{AC} \\ \Rightarrow & \mathrm{BD} & =s-b\end{aligned}$
Hence, proved.
Q3. From an external point P , two tangents PA and PB are drawn to a circle with centre O . At one point E on the circle tangent is drawn which intersects PA and PB at C and D respectively. If $\mathrm{PA}=10 \mathrm{~cm}$, find the perimeter of $\triangle \mathrm{PCD}$.
Sol. Given: A circle with centre O. PA, PB are tangents from an external point P . A tangent CD at E intersect AP and PB at C and D respectively.
To find: Perimeter of $\triangle \mathrm{PCD}$.
Method: Tangents drawn from an external point to a circle are equal.
$\therefore \mathrm{PA}=\mathrm{PB}=10 \mathrm{~cm} \quad$ [Given]

$$
\begin{aligned}
& \mathrm{CA}=\mathrm{CE} \\
& \mathrm{DE}=\mathrm{DB}
\end{aligned}
$$

Perimeter of $\triangle P C D=P C+P D+C D$

$$
=P C+P D+C E+D E
$$

$$
=P C+C E+P D+D E
$$

$$
=\mathrm{PC}+\mathrm{CA}+\mathrm{PD}+\mathrm{DB}
$$

$$
=\mathrm{PA}+\mathrm{PB}
$$

$$
=10+10=20 \mathrm{~cm}
$$

\therefore Perimeter of $\triangle \mathrm{PCD}=20 \mathrm{~cm}$.
Q4. If $A B$ is a chord of a circle with centre O. AOC is a diameter and AT is the tangent at A as shown in figure. Prove that $\angle B A T=\angle A C B$.
Sol. Given: Chord $A B$, diameter $A O C$ and tangent at A of a circle with centre O .
To prove: $\quad \angle \mathrm{BAT}=\angle \mathrm{ACB}$
Proof: Radius OA and tangent AT at A are perpendicular.

$$
\begin{array}{ll}
\therefore & \angle \mathrm{OAT}=90^{\circ} \\
\Rightarrow & \angle \mathrm{BAT}=90^{\circ}-\angle 1
\end{array}
$$

AOC is diameter.

$$
\begin{align*}
\therefore & \angle B & =90^{\circ} \\
\Rightarrow & \angle C+\angle 1 & =90^{\circ} \\
\Rightarrow & \angle C & =90^{\circ}-\angle 1 \tag{ii}
\end{align*}
$$

From (i) and (ii), we get $\angle \mathrm{BAT}=\angle \mathrm{ACB}$. Hence, proved.
Q5. Two circles with centres O and O^{\prime} of radii 3 cm and 4 cm , respectively intersect at two points P and Q, such that OP and $O^{\prime} P$ are tangents to the two circles. Find the length of common chord PQ .
Sol. PO^{\prime} is tangent on circle C_{1} at P .
OP is tangent on circle C_{2} at P . As radius OP and tangent PO^{\prime} are at a point of contact P
$\therefore \quad \angle \mathrm{P}=90^{\circ}$
So, by Pythagoras theorem in right angled $\triangle \mathrm{OPO}^{\prime}$,

$$
\begin{array}{rlrl}
\mathrm{OO}^{\prime 2}=\mathrm{OP}^{2}+\mathrm{PO}^{\prime 2} & =3^{2}+4^{2}=9+16 \\
& =25 \mathrm{~cm} \\
& \Rightarrow & \mathrm{OO}^{\prime} & =5 \mathrm{~cm} \\
& & \Delta \mathrm{OO}^{\prime} \mathrm{P} & \cong \Delta \mathrm{OO}^{\prime} \mathrm{Q} \\
& & \angle 1 & =\angle 2 \\
\Rightarrow & \Delta \mathrm{O}^{\prime} \mathrm{NP} & \cong \Delta \mathrm{O}^{\prime} \mathrm{NQ} \\
\Rightarrow & & \angle 3 & =\angle \mathrm{O}^{\prime} \mathrm{NQ} \\
& & \angle 3 & =\angle \mathrm{O}^{\prime} \mathrm{NQ}=90^{\circ}
\end{array}
$$

[By SSS criterion of congruence]
[By SAS criterion of congruence]
[CPCT]
[Linear Pair axiom]

Let $\mathrm{ON}=y$, then $\mathrm{NO}^{\prime}=(5-y)$
Let $\mathrm{PN}=x$
By Pythagoras theorem in $\triangle \mathrm{PNO}$ and $\triangle \mathrm{PNO}^{\prime}$, we have

$$
\begin{array}{rlrl}
x^{2}+y^{2} & =3^{2} \\
x^{2}+(5-y)^{2} & =4^{2} \\
x^{2}+25+y^{2}-10 y & =16 \\
x^{2}+y^{2} & =9 \tag{i}\\
-x^{2}-10 y & =7 \\
\Rightarrow & & 25-10 y & =7-25 \\
\Rightarrow & & -10 y & =-18 \\
\Rightarrow & & y & =1.8 \\
\text { But, } & & x^{2}+y^{2} & =3^{2} \\
\Rightarrow & & x^{2}+(1.8)^{2} & =3^{2} \\
\Rightarrow & & x^{2} & =9-3.24 \\
\Rightarrow & & x^{2} & =5.76 \\
\Rightarrow & & x & =2.4
\end{array}
$$

[Subtract (i) from (ii)]
\therefore The perpendicular drawn from the centre bisects the chord.

$$
\begin{array}{rlrl}
\therefore & \mathrm{PQ} & =2 \mathrm{PN}=2 x \\
& & =2 \times 2.4 \\
\Rightarrow & & \mathrm{PQ} & =4.8 \mathrm{~cm}
\end{array}
$$

Q6. In a right triangle ABC in which $\angle \mathrm{B}=90^{\circ}$, a circle is drawn with $A B$ as diameter intersecting the hypotenuse $A C$ at P. Prove that the tangent to the circle at P bisects BC .
Sol. Given: $\triangle \mathrm{ABC}$ in which $\angle B=90^{\circ}$
Circle with diameter $A B$ intersect the hypotenuse AC at P.
A tangent SPQ at P is drawn to meet $B C$ at Q.
To prove: Q is mid point of BC.

Construction: Join PB.
Proof: SPQ is tangent and AP is chord at contact point P .

\therefore	$\angle 2$	$=\angle 3$	
\Rightarrow	$\angle 2$	$=\angle 1$	[Angles in alternate segment of circle]
	$\angle 3$	$=\angle 1$	$\ldots(i)$

$O B$ is radius so, $B C$ will be tangent at B.

$$
\begin{array}{rlrl}
\therefore & \angle 3 & =90^{\circ}-\angle 4 \\
& & \angle \mathrm{APB} & =90^{\circ} \\
\Rightarrow & \angle \mathrm{C} & =90^{\circ}-\angle 4 \tag{iii}
\end{array}
$$

[\angle in a semi circle]
From (ii) and (iii), $\angle \mathrm{C}=\angle 3$
Using (i), $\quad \angle \mathrm{C}=\angle 1$
$\Rightarrow \quad \mathrm{CQ}=\mathrm{QP} \quad \ldots(\mathrm{iv}) \quad$ [Sides opp. to $=\angle \mathrm{s}$ in $\triangle \mathrm{QPC}$]
$\angle 4=90^{\circ}-\angle 3$
$\angle 5=90^{\circ}-\angle 1$
[From fig.]
$\angle 3=\angle 1$
$\therefore \quad \angle 4=\angle 5$
$\Rightarrow \quad \mathrm{PQ}=\mathrm{BQ} \ldots(v)$ [Sides opp. to equal angles in $\triangle \mathrm{QPB}$]
From (iv) and (v),

$$
B Q=C Q
$$

Therefore, Q is mid-point of $B C$. Hence, proved.
Q7. In the given figure, tangents PQ and PR are drawn to a circle such that $\angle \mathrm{RPQ}=30^{\circ}$. A chord RS is drawn parallel to tangent PQ. Find the $\angle R Q S$.
[Hint: Draw a line through Q and perpendicular to QP.]
Sol. In $\triangle \mathrm{PRQ}, \mathrm{PQ}$ and PR are tangents from an external point P to circle.

$$
\begin{array}{lrl}
\therefore & \mathrm{PR}=\mathrm{PQ} \\
\Rightarrow & \angle 2= & \angle 1 \\
\text { equal] } & \angle 1+\angle 2+\angle \mathrm{RPQ}=180^{\circ} & {[\angle \text { s opp. to equal sides in } \triangle \mathrm{PRQ} \text { are }} \\
\Rightarrow & \angle 1+\angle 1+30^{\circ}=180^{\circ} \\
\Rightarrow & 2 \angle 1=180^{\circ}-30^{\circ} \\
\Rightarrow & \angle 1=\frac{150^{\circ}}{2} \\
\therefore & \angle 1=\angle 2=75^{\circ} & \text { [Int. } \angle \mathrm{s} \text { of } \triangle \text {] } \\
\Rightarrow & \angle 1 &
\end{array}
$$

Tangent PQ \| SR
$\therefore \quad \angle 2=\angle 3=75^{\circ} \quad$ [Alternate interior angles]
PQ is tangent at Q and QR is chord at Q .
$\therefore \quad \angle \mathrm{S}=\angle 2=75^{\circ} \quad[\angle \mathrm{s}$ in alternate segment of circle]
In $\triangle S R Q$,
$\angle \mathrm{S}+\angle 3+\angle \mathrm{SQR}=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 75^{\circ}+75^{\circ}+\angle \mathrm{SQR}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{SQR}=180^{\circ}-150^{\circ}$
$\Rightarrow \quad \angle \mathrm{SQR}=30^{\circ}$
Q8. $A B$ is a diameter and $A C$ is chord of a circle with centre O such that $\angle \mathrm{BAC}=30^{\circ}$. The tangent at C intersects extended AB at a point D. Prove that $B C=B D$.

Sol. Given: A circle with centre O.
A tangent $C D$ at C.
Diameter $A B$ is produced to D.
$B C$ and $A C$ chords are joined, $\angle B A C=30^{\circ}$.

To prove:

$$
B C=B D
$$

Proof: DC is tangent at C and, CB is chord at C .

$\therefore \quad \angle \mathrm{DCB}=\angle \mathrm{BAC} \quad[\angle \mathrm{s}$ in alternate segment of a circle $]$
$\Rightarrow \quad \angle \mathrm{DCB}=30^{\circ} \quad \ldots$ (i)
AOB is diameter.

```
\(\therefore \quad \angle B C A=90^{\circ}\)
\(\therefore \quad \angle \mathrm{ABC}=180^{\circ}-90^{\circ}-30^{\circ}=60^{\circ}\)
In \(\triangle B D C\),
    Exterior \(\angle \mathrm{ABC}=\angle \mathrm{D}+\angle \mathrm{BCD}\)
\(\Rightarrow \quad 60^{\circ}=\angle \mathrm{D}+30^{\circ}\)
\(\Rightarrow \quad \angle \mathrm{D}=30^{\circ}\)
\(\therefore \quad \angle \mathrm{DCB}=\angle \mathrm{D}=30^{\circ} \quad\) [From (i), (ii)]
\(\Rightarrow \quad B D=B C \quad[\because\) Sides opposite to equal angles are
equal in a triangle]
Hence, proved.
```

Q9. Prove that the tangent drawn at the midpoint of an arc of a circle is parallel to the chord joining the end points of the arc.
Sol. Given: arc BAC in which A is mid point of $\operatorname{arc} B A C$.
PAQ is tangent at A .
To prove: BC II PAQ
Proof: PAQ is tangent and $C A B$ is an arc at
 contact point A.
$\therefore \quad \angle \mathrm{CAQ}=\angle \mathrm{B}$
[Angles in alternate segment of a circle]
A is mid point of arc BAC.
$\therefore \quad$ min. arc $A B=$ min. arc $A C$
$\Rightarrow \quad$ Chord $A B=$ Chord $A C \quad[E q u a l$ arcs subtend equal chords]
$\Rightarrow \quad \angle \mathrm{C}=\angle \mathrm{B} \quad \ldots$ (ii) \quad [Angles opp. to equal sides in $\triangle \mathrm{ABC}$ are equal]
$\Rightarrow \quad \angle \mathrm{C}=\angle \mathrm{CAQ}$
[From (i) and (ii)]
These are alternate interior angles and are equal.
$\therefore \mathrm{BC} \| \mathrm{PAQ}$.
Hence, proved.
Q10. In the given figure, the common tangents, $A B$ and $C D$ to two circles with centres O and O^{\prime} intersect at E . Prove that the points O, E and O^{\prime} are collinear.

Sol. Given: Two circles (non intersecting) with their centres O and O^{\prime}.
Two common tangents AB and $C D$ intersect at E between the circles.
To prove: $\mathrm{O}, \mathrm{E}, \mathrm{O}^{\prime}$ points are collinear.
Construction: Join OA, OC,
 $\mathrm{O}^{\prime} \mathrm{D}, \mathrm{O}^{\prime} \mathrm{B}$ and EO and EO^{\prime}

Proof: In $\triangle \mathrm{AEO}$ and $\triangle \mathrm{CEO}$,

$$
\begin{aligned}
\mathrm{OE} & =\mathrm{OE} \\
\mathrm{OA} & =\mathrm{OC} \\
\mathrm{EA} & =\mathrm{EC}
\end{aligned}
$$

[Common]
[Radii of same circle]
[Tangents from an external point to a circle are equal in length]
$\therefore \quad \angle \mathrm{OEA} \cong \angle \mathrm{OEC} \quad[\mathrm{By} \mathrm{SSS}$ criterion of congruence]
$\Rightarrow \quad \angle \mathrm{OEA}=\angle \mathrm{OEC}$ [CPCT]
$\therefore \quad \angle 1=\angle 2 \quad$ [CPCT]
Similarly, $\angle 5=\angle 6$
and $\quad \angle 3=\angle 4$
[Vertically opposite angles]
Since sum of angles at a point $=360^{\circ}$
$\therefore \quad \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6=360^{\circ}$
$\Rightarrow \quad 2(\angle 1+\angle 3+\angle 5)=360^{\circ}$
$\Rightarrow \quad \angle 1+\angle 3+\angle 5=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{OEO}^{\prime}=180^{\circ}$
$\therefore \mathrm{OEO}^{\prime}$ is a straight line.
Hence, O, E and O^{\prime} are collinear.
Q11. In the given figure, O is the centre of a circle of radius 5 cm . T is a point such that $O T=13 \mathrm{~cm}$ and OT intersects the circle at E. If AB is the tangent to the circle at E , find the length of AB .
Sol. $\quad \mathrm{OP}=\mathrm{OQ}=5 \mathrm{~cm}$

$$
\mathrm{OT}=13 \mathrm{~cm}
$$

OP and PT are radius and tangent respectively at contact point P .
$\therefore \quad \angle \mathrm{OPT}=90^{\circ}$
So, by Pythagoras theorem, in right angled $\triangle \mathrm{OPT}$, $\mathrm{PT}^{2}=\mathrm{OT}^{2}-\mathrm{OP}^{2}=13^{2}-5^{2}$

$=169-25=144$
$\Rightarrow \quad \mathrm{PT}=12 \mathrm{~cm}$.
AP and AE are two tangents from an external point A to a circle.
$\therefore \quad \mathrm{AP}=\mathrm{AE}$
AEB is tangent and $O E$ is radius at contact point E.
So,
$\mathrm{AB} \perp \mathrm{OT}$
So, by Pythagoras theorem, in right angled $\triangle \mathrm{AET}$,
$\mathrm{AE}^{2}=\mathrm{AT}^{2}-\mathrm{ET}^{2}$
$\Rightarrow \quad \mathrm{AE}^{2}=(\mathrm{PT}-\mathrm{PA})^{2}-[\mathrm{TO}-\mathrm{OE}]^{2}$

$$
\begin{array}{rlrl}
& & =(12-\mathrm{AE})^{2}-(13-5)^{2} \\
\Rightarrow & \mathrm{AE} & =(12)^{2}+(\mathrm{AE})^{2}-2(12)(\mathrm{AE})-(8)^{2} \\
\Rightarrow & \mathrm{AE}^{2}-\mathrm{AE}^{2}+24 \mathrm{AE} & =144-64 \\
\Rightarrow & 24 \mathrm{AE} & =80 \\
\Rightarrow & & \mathrm{AE} & =\frac{80}{24} \mathrm{~cm} \\
\Rightarrow & & \mathrm{AE} & =\frac{10}{3} \mathrm{~cm}
\end{array}
$$

In $\triangle \mathrm{TPO}$ and $\Delta \mathrm{TQO}$,

$$
\begin{array}{rlr}
\text { OT } & =\mathrm{OT} & \text { [Common] } \\
& & \text { PT }
\end{array}=\mathrm{QT} \quad \text { [Tangents from T] }
$$

In $\triangle \mathrm{ETA}$ and $\triangle \mathrm{ETB}$,
$\mathrm{ET}=\mathrm{ET}$
$\angle \mathrm{TEA}=\angle \mathrm{TEB}=90^{\circ}$
$\angle 1=\angle 2$
$\therefore \quad \triangle \mathrm{ETA} \cong \triangle \mathrm{ETB}$
$\Rightarrow \quad \mathrm{AE}=\mathrm{BE}$
[PCT]
[By ASA criterion of congruence]
\rightarrow
[СРСТ]
$\Rightarrow \quad \mathrm{AB}=2 \mathrm{AE}=2 \times \frac{10}{3}$
$\Rightarrow \quad \mathrm{AB}=\frac{20}{3} \mathrm{~cm}$.
Hence, the required length is $\frac{20}{3} \mathrm{~cm}$.
Q12. The tangent at a point C of a circle and a diameter $A B$ when extended intersect at P. If $\angle \mathrm{PCA}=110^{\circ}$, find $\angle \mathrm{CBA}$.
[Hint: Join C with centre O].
Sol. OC and CP are radius and tangent respectively at contact
 point C .
So,
$\angle \mathrm{OCP}=90^{\circ}$
$\angle \mathrm{OCA}=\angle \mathrm{ACP}-\angle \mathrm{OCP}$
$\Rightarrow \quad \angle \mathrm{OCA}=110^{\circ}-90^{\circ}$
$\Rightarrow \quad \angle \mathrm{OCA}=20^{\circ}$
In $\triangle \mathrm{OAC}$,
$\mathrm{OA}=\mathrm{OC}$
[Radii of same circle]
$\therefore \quad \angle \mathrm{OCA}=\angle \mathrm{A}=20^{\circ} \quad[\because$ Angles opposite to equal sides
are equal]

CP and CB are tangent and chord of a circle.
$\therefore \quad \angle \mathrm{CBP}=\angle \mathrm{A} \quad$ [Angles in alternate segments are equal]
In $\triangle C A P$,

$$
\begin{aligned}
& \angle \mathrm{P}+\angle \mathrm{A}+\angle \mathrm{ACP} & =180^{\circ} \quad \text { [Angle sum property of a triangle] } \\
\Rightarrow & \angle \mathrm{P}+20^{\circ}+110^{\circ} & =180^{\circ} \\
\Rightarrow & \angle \mathrm{P} & =180^{\circ}-130^{\circ} \\
\Rightarrow & \angle \mathrm{P} & =50^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{BPC}$,
Exterior angle $\angle \mathrm{CBA}=\angle \mathrm{P}+\angle \mathrm{BCP}$
$\Rightarrow \quad \angle \mathrm{CBA}=50^{\circ}+20^{\circ}$
$\Rightarrow \quad \angle \mathrm{CBA}=70^{\circ}$
Q13. If an isosceles $\triangle A B C$ in which $A B=A C=6 \mathrm{~cm}$ is inscribed in a circle of radius 9 cm , find the area of the triangle.
Sol. In figure, $\triangle A B C$ has $A B=A C=6 \mathrm{~cm}$. In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OAC}$,

$$
\begin{array}{rlr}
\mathrm{AB} & =\mathrm{AC} & \text { [Given] } \\
\mathrm{OA} & =\mathrm{OA} & \text { [Common] } \\
\mathrm{OB} & =\mathrm{OC}[\text { [Radii of same circle }] \\
\therefore \quad \Delta \mathrm{OAB} & \cong \Delta \mathrm{OAC}
\end{array}
$$

[By SSS criterion of congruence]

$$
\Rightarrow \quad \angle 1=\angle 2 \quad[\mathrm{CPCT}]
$$

In $\triangle \mathrm{AMC}$ and $\triangle \mathrm{AMB}$,

$$
\text { Now, Area of } \triangle \mathrm{ABC}=\frac{1}{2} \mathrm{BC} \times \mathrm{AM}
$$

Let $\mathrm{BM}=x$ and $\mathrm{AM}=y$,
then
$\mathrm{MO}=\mathrm{OA}-\mathrm{AM}$
$\Rightarrow \quad \mathrm{MO}=\mathrm{OA}-\mathrm{AM}$
$\Rightarrow \quad \mathrm{MO}=9-y$
In right angled $\triangle \mathrm{BMA}$ and $\triangle \mathrm{BMO}$,

$$
\begin{array}{rlr}
& x^{2}+y^{2}=6^{2} & \ldots(\text { (i) } \text { [By Pythagoras theorem] } \\
& x^{2}+(9-y)^{2}=9^{2} \\
& x^{2}+(9)^{2}+(y)^{2}-2(9)(y)=81 \\
\Rightarrow & x^{2}+81+y^{2}-18 y=81 \tag{ii}\\
\Rightarrow & x^{2}+y^{2}-18 y=0
\end{array}
$$

Now, subtract (i) from (ii)

$$
\begin{aligned}
& \angle 1=\angle 2 \quad \text { [Proved above] } \\
& \mathrm{AM}=\mathrm{AM} \quad \text { [Common] } \\
& \mathrm{AB}=\mathrm{AC} \quad \text { [Given] } \\
& \therefore \quad \triangle \mathrm{AMB} \cong \triangle \mathrm{AMC} \quad[\mathrm{By} \text { SAS criterion of congruence] } \\
& \Rightarrow \quad \angle \mathrm{AMB}=\angle \mathrm{AMC}=90^{\circ} \quad[\mathrm{CPCT} \text { and Linear pair axiom] }
\end{aligned}
$$

Q14. A is a point at a distance 13 cm from the centre ' O ' of a circle of radius 5 cm . AP and AQ are the tangents to circle at P and Q . If a tangent $B C$ is drawn at point R lying on minor arc $P Q$ to intersect $A P$ at B and $A Q$ at C. Find the perimeter of $\triangle A B C$.
Sol. $\quad \mathrm{OA}=13 \mathrm{~cm}$

$$
\mathrm{OP}=\mathrm{OQ}=5 \mathrm{~cm}
$$

OP and PA are radius and tangent respectively at contact point P .
$\therefore \quad \angle \mathrm{OPA}=90^{\circ}$ In right angled \triangle OPA by Pythagoras theorem

$$
\mathrm{PA}^{2}=\mathrm{OA}^{2}-\mathrm{OP}^{2}=13^{2}-5^{2}=169-25=144
$$

$\Rightarrow \quad P A=12 \mathrm{~cm}$
Points A, B and C are exterior to the circle and tangents drawn from an external point to a circle are equal so

$$
\begin{aligned}
\mathrm{PA} & =\mathrm{QA} \\
\mathrm{BP} & =\mathrm{BR} \\
\mathrm{CR} & =\mathrm{CQ}
\end{aligned}
$$

Perimeter of $\triangle A B C=A B+B C+A C$

$$
\begin{aligned}
& =A B+B R+R C+A C \\
& =A B+B P+C Q+A C=A P+A Q
\end{aligned}
$$

[From figure]

$$
=\mathrm{AP}+\mathrm{AP}=2 \mathrm{AP}=2 \times 12=24 \mathrm{~cm}
$$

So, the perimeter of $\triangle A B C=24 \mathrm{~cm}$.

$$
\begin{align*}
& x^{2}+y^{2}-18 y=0 \\
& x^{2}+y^{2} \quad={ }_{-} 36 \\
& -18 y=-36 \\
& \Rightarrow \quad y=\frac{-36}{-18} \\
& \Rightarrow \quad y=2 \mathrm{~cm} \Rightarrow \mathrm{AM}=2 \mathrm{~cm} \\
& \text { But, } \quad x^{2}+y^{2}=36 \tag{i}\\
& \Rightarrow \quad x^{2}+(-2)=36 \\
& \Rightarrow \quad x^{2}=36-4=32 \\
& \Rightarrow \quad x=\sqrt{32}=4 \sqrt{2} \mathrm{~cm} \\
& \therefore \quad B C=2 x=2 \times 4 \sqrt{2}=8 \sqrt{2} \mathrm{~cm} \\
& \text { (} \because \text { Perpendicular from centre to chord bisects the chord) } \\
& \therefore \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \times 2 \times 8 \sqrt{2} \\
& \Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=8 \sqrt{2} \mathrm{~cm}^{2}
\end{align*}
$$

