EXERCISE 9.1

Choose the correct answer from the given four options:

Q1. If the radii of two concentric circles are 4 cm and 5 cm, then the length of each chord of one circle which is the tangent to the other circle is

Tangent AT at A and radius OA at A arc at 90°.

So, $\angle OAT = 90^{\circ}$ $\therefore \qquad \angle OAB + \angle BAT = 90^{\circ}$ $\Rightarrow \qquad 40^{\circ} + \angle BAT = 90^{\circ}$ $\Rightarrow \qquad \angle BAT = 90^{\circ} - 40^{\circ}$ $\Rightarrow \qquad \angle BAT = 50^{\circ}.$

Hence, verifies option (*c*).

 \Rightarrow

Q4. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is

Perpendicular from centre O of circle bisect the chord. So CD = 2MD $= 2 \times 4 = 8$ cm. Hence, length of chord CD = 8 cm, which verifies option (*d*). **Q6.** In the given figure, AT is a tangent to the circle with centre 'O' such that OT = 4 cm and $\angle OTA = 30^{\circ}$. \cap Then AT is equal to $4 \,\mathrm{cm}$ (*a*) 4 cm (b) 2 cm 30° (c) $2\sqrt{3}$ cm (d) $4\sqrt{3}$ cm ·T **Sol.** (*c*): Join OA. OA is radius and AT is tangent at contact point A. $\angle OAT = 90^{\circ}, OT = 4 \text{ cm}$ So, [Given] Ο <u>4</u> cm 30° **-**T $\frac{1}{2} = \cos 30^\circ \Rightarrow AT = 4 \times \frac{\sqrt{3}}{2} = 2\sqrt{3} \text{ cm}.$ Base Now, $\frac{AT}{4} =$ Hypotenuse Hence, verifies the option (*c*). Q7. In the given figure, 'O' is the centre of circle, R PQ is a chord and the tangent PR at P makes an 50° angle of 50° with PQ, then \angle POQ is equal to (a) 100° (*b*) 80° (*d*) 75° C (c) 90° **Sol.** (*a*): OP is radius and PR is tangent at P. So, $\angle OPR = 90^{\circ}$ $\angle OPO + 50^\circ = 90^\circ$ \Rightarrow $\angle OPQ = 90^{\circ} - 50^{\circ}$ \Rightarrow $\angle OPO = 40^{\circ}$ \Rightarrow In $\triangle OPO$, OP = OO[Radii of same circle] $\angle O = \angle OPO = 40^{\circ}$ [Angles opposite to equal sides are equal] $\angle POQ = 180^{\circ} - \angle P - \angle Q$ But, $= 180^{\circ} - 40^{\circ} - 40^{\circ} = 180^{\circ} - 80^{\circ} = 100^{\circ}$ $\angle POO = 100^{\circ}$. \Rightarrow

Hence, verifies the option (*a*).

Q10. In the given figure, if PQR is the tangent to a circle at Q, whose centre is O, AB is a chord В parallel to PR and $\angle BQR = 70^\circ$, then $\angle AQB$ is equal to Ο (*a*) 20° (b) 40° (c) 35° (*d*) 45° 70° **Sol.** (*b*): AB || PQR [Given] P R $\angle B = \angle BQR = 70^{\circ}$ Q [Alternate interior angles] and $\angle OQR = \angle AMQ$ [Alternate interior angles] М В ПП As PQR and OQ are tangent and radius at contact point Q Ο $\angle OQR = 90^{\circ}$... $\angle 1 + \angle 70^\circ = 90^\circ$ \Rightarrow $\angle 1 = 90^{\circ} - 70^{\circ} = 20^{\circ}$ \Rightarrow $\therefore \angle AMO = 90^{\circ}$ and perpendicular from centre P R to chord bisect the chord So. MA = MB $\angle QMA = \angle QMB$ [Each 90°] MQ = MQ[Common] $\Delta QMA \cong \Delta QMB$ [By SAS criterion of congruence] $\angle A = \angle B$ \Rightarrow $\angle A = 70^{\circ}$ $[:: \angle B = 70^\circ]$ \Rightarrow $\angle A + \angle AMQ + \angle 2 = 180^{\circ}$ [Angle sum property of a triangle] $70^{\circ} + 90^{\circ} + \angle 2 = 180^{\circ}$ \Rightarrow $\angle 2 = 180^{\circ} - 160^{\circ}$ \Rightarrow ∠2 = 20° \Rightarrow $\angle AOB = \angle 1 + \angle 2 = 20^{\circ} + 20^{\circ} = 40^{\circ}$... Hence, verifies option (*b*).

EXERCISE 9.2

 $\angle O + \angle P + \angle OAP + \angle OBP = 360^{\circ}$ $\Rightarrow \qquad 60^{\circ} + \angle P + 90^{\circ} + 90^{\circ} = 360^{\circ}$ $\Rightarrow \qquad \angle P = 360^{\circ} - 240^{\circ}$ $\Rightarrow \qquad \angle P = 120^{\circ}$

Hence, the given statement is false.

Q2. The length of tangent from an external point on a circle is always greater than the radius of the circle.

Sol. False: Consider any point P external to a circle away from O. Now, draw tangent PA on P the circle. Clearly, PA > r [:: P is external to circle and P is at sufficient

distance]

Now, again consider any point P_1 on the tangent AP very near to contact point A of tangent PA, $P_1A < AO$

So, it is clear that the length of the tangent PA and P₁A are greater and smaller respectively than radius OA.

Hence, the length of the tangent from an external point of a circle may or may not be greater than the radius of the circle. Hence, the given statement is false.

Q3. The length of the tangent from an external point P on a circle with centre O is always less than OP.

Sol. True:

PT and OT are the tangent and radius respectively at contact point T. So, $\angle OTP = 90^{\circ}$ $\Rightarrow \triangle OPT$ is right angled triangle. Again, in $\triangle OPT$

∵ ∠T > ∠O

OP > PT [Side opposite to greater angle is larger] Hence, the given statement is true. Q

Q4. The angle between two tangents to a circle may be 0° .

Sol. True:

Consider the diameter POQ of a circle with centre O. The tangent at P and Q are drawn, as we know the radius and tangent at contact

point are perpendicular so $\angle 1 = \angle 2 = 90^\circ$. These

are alternate angles so the tangent APB || CQD *i.e.*, angle between two tangents to a circle may be zero.

Hence, the given statement is true.

Q5. If the angle between two tangents drawn from a point P to a circle of radius '*a*' and centre O is 90°, then OP = $a\sqrt{2}$.

Sol. True.

Hence, the given statement is true.

Q6. If the angle between two tangents drawn from a point P to a circle of radius '*a*' and centre O is 60°, then OP = $a\sqrt{3}$.

Q7. The tangent to the circumcircle of an isosceles \triangle ABC at A, in which AB = AC, is parallel to BC.

Ρ·

Sol. True. A \triangle ABC, inscribed in a circle in which AB = AC. PAQ is tangent at A. AB is chord.

Q

 \therefore Angle \angle PAB formed by chord (AB) with tangent is equal to the angle \angle C formed by chord AC in alternate segment.

In ∆ABC,

...

...

$$AB = AC$$
[Given]
$$\angle B = \angle C [:: Angles opposite to equal sides are equal] ...(ii)$$

...(*i*)

From (*i*) and (*ii*), $\angle B = \angle PAB$

 $\angle PAB = \angle C$

These are alternate interior angles.

So, PAQ || BC

Hence, the given statement is true.

Q8. If a number of circles touch a given line segment PQ at a point A, then their centres lies on the perpendicular bisector of PQ.

Sol. False:

 C_1A and PAQ are radius and tangent at contact point A.

$$\therefore \qquad \angle C_1 AP = 90^\circ \Rightarrow C_1 A \perp PQ$$

Similarly, $\angle C_2 AP = 90^\circ \Rightarrow C_2 A \perp PQ$
 $\angle C_3 AP = 90^\circ \Rightarrow C_3 A \perp PQ$

We know that perpendicular on any point of a segment PQ may be only one.

So, point segments C_1A , C_2A , C_3A , C_4A , ... will be on a line.

 \Rightarrow C₁A, C₂A, C₃A, C₄A will lie on a line, which is perpendicular on PQ at A.

As A is not mid point of PQ. So, the perpendicular AB will not be perpendicular bisector of PQ.

Hence, the given statement is false.

Q9. If a number of circles pass through the end points P and Q of a line segment PQ, then their centres lie on the perpendicular bisector of PQ.

Sol. True: Centre of any circle passing through the end points P and Q of a line segment are equidistant from P and Q.

...

$$A_1 P = A_1 Q$$
$$A_2 P = A_2 Q$$
$$A_3 P = A_3 Q$$

as we know that any point on perpendicular bisector of a segment is equidistant from the end points of the segment. Hence, A_1 , A_2 , A_3 points are the centres of circles passing through the end points P and Q of a segment PQ or the centres of circles lie on the perpendicular bisector of PQ.

If the tangent at C intersects AB extended at D, then BC = BD. Sol. True: CD is a tangent at contact point C. AOB is diameter which meets tangent A produced at D. Chord AC makes $\angle A = 30^{\circ}$ with diameter AB. To prove: BD = BC **Proof:** In $\triangle OAC$, D OA = OC = r [Radii of same circle] $\angle 1 = \angle A$ $[\angle s \text{ opp. to equal sides are equal}]$ $\angle 1 = 30^{\circ}$ $[:: \angle A = 30^\circ]$ \Rightarrow Exterior $\angle BOC = \angle 2 = \angle 1 + \angle A = (30^\circ + 30^\circ) = 60^\circ$ Now, in $\triangle OCB$, OC = OB[Radii of same circle] $\angle 3 = \angle 4$ [Angles opposite to equal sides are equal] ... $\angle 3 + \angle 4 + \angle COB = 180^{\circ}$ $\angle 3 + \angle 3 + 60^{\circ} = 180^{\circ}$ [Angle sum property of triangle] \Rightarrow $2 \angle 3 = 180^\circ - 60^\circ = 120^\circ$ \Rightarrow $\angle 3 = 60^\circ = \angle 4$ \Rightarrow $\angle 6 + \angle 4 = 180^{\circ}$ [Linear pair axiom] $\angle 6 = 180^\circ - \angle 4$ \Rightarrow $= 180^{\circ} - 60^{\circ}$ ∠6 = 120° \Rightarrow : Tangent CD and radius CO are at contact point C. ... $\angle OCD = 90^{\circ}$ $\angle 3 + \angle 5 = 90^{\circ}$ \Rightarrow $60^{\circ} + \angle 5 = 90^{\circ}$ \Rightarrow $\angle 5 = 30^{\circ}$ \Rightarrow

Q10. AB is a diameter of a circle and AC is its chord such that $\angle BAC = 30^\circ$.

Now, in $\triangle BCD$, we have $\angle D + \angle 5 + \angle 6 = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow \qquad \angle D = 180^{\circ} - \angle 5 - \angle 6$ $= 180^{\circ} - 30^{\circ} - 120^{\circ} = 180^{\circ} - 150^{\circ}$ $\Rightarrow \qquad \angle D = 30^{\circ}$ $\therefore \qquad \angle D = \angle 5 = 30^{\circ}$ $\Rightarrow \qquad BC = BD$ [Sides opposite to equal $\angle s$ of a triangle are equal]

Hence, verifies the given statement true.

EXERCISE 9.3

Q1. Out of the two concentric circles, the radius of the outer circle is 5 cm and the chord AC of length 8 cm is a tangent to the inner circle. Find the radius of the inner circle.

Sol. Given: Two concentric circles C₁ and C₂ with centre O.

Chord AC of circle C_2 is tangent of circle C_1 at B.

We know that tangent AC and radius BO at point B are perpendicular. ... Perpendicular from centre to chord bisects the chord.

$$\therefore \qquad AB = CB = \frac{AC}{2} = \frac{8}{2} = 4 \text{ cm}$$

In right angle $\triangle ABO$,
 $OB^2 = OA^2 - AB^2$
[By Pythagoras theorem]
 $= 5^2 - 4^2 = 25 - 16 = 9$

OB = 3 cmHence, radius of circle C_1 is 3 cm.

 \Rightarrow

Q2. Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.

Sol. Given: Tangents PR and PQ from an external point P to a circle with centre O.

To prove: Quadrilateral QORP is cyclic. Proof: RO and RP are the radius and tangent respectively at contact point R.

 $\angle PRO = 90^{\circ}$...

 $\angle POO = 90^{\circ}$ Similarly, In quadrilateral QORP, we have

 $\angle P + \angle R + \angle O + \angle Q = 360^{\circ}$ $\Rightarrow \angle P + \angle 90^\circ + \angle O + \angle 90^\circ = 360^\circ$ $\angle P + \angle O = 360^{\circ} - 180^{\circ} = 180^{\circ}$ These are opposite angles of quadrilateral QORP and are supplementary. :. Quadrilateral QORP is cyclic. Hence, proved.

Q3. If from an external point B of a circle with centre 'O', two tangents BC, BD are drawn such that $\angle DBC = 120^\circ$, prove that BC + BD = BO, *i.e.*, BO = 2BCSol. Given: A circle with centre O. Tangents BC and BD are 60° drawn from an external point B< 200 B such that $\angle DBC = 120^{\circ}$. BC + BD = BO, i.e., BO = 2BCTo prove: Construction: Join OB, OC and OD. **Proof:** In $\triangle OBC$ and $\triangle OBD$, we have OB = OB[Common] OC = OD[Radii of same circle] BC = BD[Tangents from an external point are equal in length] ...(*i*) $\triangle OBC \cong \triangle OBD$ [By SSS criterion of congruence] ... $\angle OBC = \angle OBD$ (CPCT) \Rightarrow $\angle OBC = \frac{1}{2} \angle DBC = \frac{1}{2} \times 120^{\circ}$ [:: $\angle CBD = 120^{\circ}$ given] *.*.. $\angle OBC = 60^{\circ}$ \Rightarrow OC and BC are radius and tangent respectively at contact point C. So, $\angle OCB = 90^{\circ}$ Now, in right angle $\triangle OCB$, $\angle OBC = 60^{\circ}$ $\cos 60^\circ = \frac{BC}{BC}$... BO $\frac{1}{2} = \frac{BC}{BO}$ \Rightarrow OB = 2BC \Rightarrow Hence, proved (ii) part. OB = BC + BC \Rightarrow \Rightarrow OB = BC + BD[:: BC = BD from (i)] Hence, proved. **Q4.** Prove that the centre of a circle touching two intersecting lines lies on the angle bisector of the lines. Sol. Given: Two intersecting lines AT and BT intersect at T. A circle with centre O touches the above lines at A and B. **To prove:** OT bisects the $\angle ATB$. Construction: Join OA and OB. **Proof:** OA is radius and AT is В tangent at A.

 $\angle OAT = 90^{\circ}$... Similarly, $\angle OBT = 90^{\circ}$ In $\triangle OTA$ and $\triangle OTB$, we have $\angle OAT = \angle OBT = 90^{\circ}$ OT = OT[Common] OA = OB[Radii of same circle] $\Delta OTA \cong \Delta OTB$ [By RHS criterion of congruence] *.*.. $\angle OTA = \angle OTB$ [CPCT] \Rightarrow \Rightarrow Centre of circle 'O' lies on the angle bisector of \angle ATB. Hence, proved. Q5. In the given figure, AB and CD are common tangents to two circles of unequal radii. Prove that AB = CD. C **Sol.** Given: Circles C₁ and C₂ of radii r_1 and r_2 respectively and $r_1 < r_2$. AB and CD are two common tangents. To prove: AB = CD Construction: Produce AB and CD upto point P where С, both tangents meet. Proof: Tangents from an D external point to a circle are equal. For circle C_{1} , PB = PD...(*i*) and for circle $C_{2'}$ PA = PC ...(*ii*) Subtracting (i) from (ii), we have PA - PB = PC - PDAB = CD. \Rightarrow Hence, proved.

Q6. In Question 5 above, if radii of the two circles are equal, prove that AB = CD.

Proof: Since tangent at any point of a circle is perpendicular to the radius to the point of contact.

$$\begin{array}{ccc} \therefore & \angle O_1 AB = \angle O_2 BA = 90^{\circ} \\ As & O_1 A = O_2 B, \text{ so } O_1 ABO_2 \text{ is a rectangle.} \\ Since opposite sides of a rectangle are equal, \\ \therefore & AB = O_1 O_2 & \dots(i) \\ Similarly, we can prove that $O_1 CDO_2 \text{ is a rectangle.} \\ \therefore & O_1 O_2 = CD & \dots(ii) \end{array}$$$

From (i) and (ii), we get

$$AB = CD.$$

Hence, proved.

Q7. In the given figure, common tangents AB and CD to two circles intersect at E. Prove that AB = CD.

Sol. Given: Two non-intersecting circles are shown in the figure. Two intersecting tangents AB and CD intersect at E. E point is between the circles and outside also.

To prove: AB = CD

Proof: We know that tangents drawn from an external point (E) to a circle are equal. Point E is outside of both the circles.

So,	EA = EC	(<i>i</i>)
	EB = ED	(<i>ii</i>)
\Rightarrow	EA + EB = EC + ED	[Adding (i) and (ii)]
\Rightarrow	AB = CD	-

Hence, proved.

Q8. A chord PQ of a circle is parallel to the tangent drawn at a point R of the circle. Prove that R bisects the arc PRQ.

$$\Rightarrow \qquad \angle 2 = \angle 3$$

 \Rightarrow PR = RQ [Sides opp. to equal \angle s in \triangle RPQ]

 \because Equal chords subtend equal arcs in a circle so

or R bisect the arc PRQ. Hence, proved.

Q9. Prove that the tangents drawn at the ends of a chord of a circle make equal angles with the chord.

Sol. Given: A chord AB of a circle, tangents AP and BP at A and B respectively are drawn.

To prove: $\angle PAB = \angle PBA$

Proof: We know that tangents drawn from an external point P to a circle are equal so PA = PB.

 $\angle \Rightarrow 2 = \angle 1$

[Angles opposite to equal sides of a triangle are equal]

Hence, tangents PA and PB make equal angles with chord AB. Hence, proved.

Q10. Prove that a diameter AB of a circle bisects all those chords which are parallel to the tangent at the point A.

Sol. Given: A circle with centre O and AOB is diameter.

CAD is a tangent at A. Chord EF || tangent CAD **To prove:** AB bisects any chord EF || CAD.

Proof: OA radius is perpendicular to tangent CAD.

 $\therefore \qquad \angle 1 = 90^{\circ}$ CAD || EF

:. $\angle 1 \angle = 2 = 90^{\circ}$ [Alternate interior angles] Point M is on diameter which passes through centre O.

: Perpendicular drawn from centre to chord bisect the chord. Hence, AB bisects any chord EF || CAD.

EXERCISE 9.4

Q1. If a hexagon ABCDEF circumscribe a circle, then prove that AB + CD + EF = BC + DE + FAD **Sol. Given:** A circle inscribed in a hexagon ABCDEF. S Sides, AB, BC, CD, DE and DF touches the circle at E P, Q, R, S, T and U respectively. Т To prove: AB + CD + EF = BC + DE + FA**Proof:** We know that tangents from an external F point to a circle are equal. Here, vertices of hexagon are outside the circle so В Р AP = AUBP = BOCO = CRDR = DSES = ETFT = FULHS = AB + CD + EF = (AP + PB) + (DR + CR) + (ET + TF)By using above results, we have LHS = AB + CD + EF = AU + BQ + DS + CQ + ES + FU= AU + FU + BQ + CQ + DS + ES= AF + BC + DE.Hence, proved. **Q2.** Let *s* denotes the semi-perimeter of a \triangle ABC in which BC = *a*, CA = *b*, AB = c. If a circle touches the sides BC, CA, AB at D, E, F respectively, prove that BD = s - b. **Sol. Given:** A circle inscribed in $\triangle ABC$ touches the sides BC, CA and AB at D, E, F respectively. C F **To prove:** BD = s - bProof: Tangents drawn from an external point to the circle are equal. Vertices of *k* Δ ABC are in the exterior of circle. So, \boldsymbol{z} y D В AF = AE = xа BF = BD = uCD = CE = zNow, AB + BC + CA = c + a + b \Rightarrow AF + BF + BD + DC + AE + CE = a + b + cx + y + y + z + x + z = a + b + c \Rightarrow 2x + 2y + 2z = a + b + c \Rightarrow 2(x+y+z) = a+b+c \Rightarrow $x + y + z = \frac{a + b + c}{z}$ \Rightarrow

 $\begin{array}{ll} \Rightarrow & x+y+z=s & [Given] \\ \Rightarrow & y=s-(x+z) \Rightarrow y=s-x-z \\ \Rightarrow & y=s-(AE+EC) \\ \Rightarrow & =s-AC \\ \Rightarrow & BD=s-b \\ Hence, proved. \end{array}$

Q3. From an external point P, two tangents PA and PB are drawn to a circle with centre O. At one point E on the circle tangent is drawn which intersects PA and PB at C and D respectively. If PA = 10 cm, find the perimeter of Δ PCD.

From (*i*) and (*ii*), we get

 \angle BAT = \angle ACB. Hence, proved.

Q5. Two circles with centres O and O' of radii 3 cm and 4 cm, respectively intersect at two points P and Q, such that OP and O'P are tangents to the two circles. Find the length of common chord PQ. **Sol.** PO' is tangent on circle C_1 at P. OP is tangent on circle C_2 at P. As radius OP and tangent PO' are at a point of contact P $\angle P = 90^{\circ}$... \cap So, by Pythagoras theorem in right angled $\triangle OPO'$, $OO'^2 = OP^2 + PO'^2 = 3^2 + 4^2 = 9 + 16$ = 25 cm C_2 OO' = 5 cm \Rightarrow $\Delta OO'P \cong \Delta OO'Q$ [By SSS criterion of congruence] $\angle 1 = \angle 2$ \Rightarrow $\Delta O'NP \cong \Delta O'NQ$ [By SAS criterion of congruence] $\angle 3 = \angle O'NQ$ [CPCT] \Rightarrow $\angle 3 = \angle O'NO = 90^{\circ}$ \Rightarrow [Linear Pair axiom] Let ON = y, then NO' = (5 - y)Let PN = xBy Pythagoras theorem in ΔPNO and $\Delta PNO'$, we have χ^2 $+ u^{2}$ $= 3^2$...(*i*) x^2 $+(5-y)^{2}$ $= 4^2$ x^2 $+25 + y^2 - 10y = 16$...(*ii*) x^2 = 9 [From (*i*)] 25 -10y = 7[Subtract (*i*) from (*ii*)] -10y = 7 - 25 \Rightarrow -10y = -18 \Rightarrow y = 1.8 \Rightarrow $x^2 + y^2 = 3^2$ But, [From (*i*)] $x^{2} + (1.8)^{2} = 3^{2}$ \Rightarrow $x^2 = 9 - 3.24$ \Rightarrow $x^2 = 5.76$ \Rightarrow x = 2.4 \Rightarrow : The perpendicular drawn from the centre bisects the chord. PQ = 2PN = 2x... $= 2 \times 2.4$ PQ = 4.8 cm \Rightarrow

Q6. In a right triangle ABC in which $\angle B = 90^\circ$, a circle is drawn with AB as diameter intersecting the hypotenuse AC at P. Prove that the tangent to the circle at P bisects BC.

Therefore, Q is mid-point of BC. Hence, proved.

Q7. In the given figure, tangents PQ and PR are drawn to a circle such that \angle RPQ = 30°. A chord RS is drawn parallel to tangent PQ. Find the \angle RQS.

[**Hint:** Draw a line through Q and perpendicular to QP.]

Sol. In \triangle PRQ, PQ and PR are tangents from an external point P to circle.

PR = PO*.*.. \Rightarrow $\angle 2 = \angle 1$ $[\angle s \text{ opp. to equal sides in } \Delta PRQ \text{ are}$ equal] $\angle 1 + \angle 2 + \angle RPO = 180^{\circ}$ [Int. $\angle s$ of Δ] $\angle 1 + \angle 1 + 30^{\circ} = 180^{\circ}$ \Rightarrow $2\angle 1 = 180^{\circ} - 30^{\circ}$ \Rightarrow $\angle 1 = \frac{150^\circ}{2}$ \Rightarrow $\angle 1 = \angle 2 = 75^{\circ}$ *.*.. Tangent PQ || SR [Given] ... $\angle 2 = \angle 3 = 75^{\circ}$ [Alternate interior angles] PQ is tangent at Q and QR is chord at Q. $\therefore \ \angle S = \angle 2 = 75^{\circ}$ $[\angle s \text{ in alternate segment of circle}]$ In ∆SRQ, \angle S + \angle 3 + \angle SQR = 180° [Angle sum property of a triangle] $75^\circ + 75^\circ + \angle SOR = 180^\circ$ \Rightarrow \Rightarrow $\angle SOR = 180^{\circ} - 150^{\circ}$ \Rightarrow $\angle SOR = 30^{\circ}$ **O8.** AB is a diameter and AC is chord of a circle with centre O such that $\angle BAC = 30^\circ$. The tangent at C intersects extended AB at a point D. Prove that BC = BD. C Sol. Given: A circle with centre O. A tangent CD at C. Diameter AB is produced to D. BC and AC chords are joined, D 30 В Ŏ $\angle BAC = 30^{\circ}$. BC = BDTo prove: **Proof:** DC is tangent at C and, CB is chord at C. $\angle DCB = \angle BAC$ [$\angle s$ in alternate segment of a circle] ... [:: $\angle BAC = 30^{\circ}$ (Given)] $\angle DCB = 30^{\circ} \dots (i)$ \Rightarrow AOB is diameter. [Given] $\angle BCA = 90^{\circ}$ [Angle in a semi circle] $\angle ABC = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$... In $\triangle BDC$. Exterior $\angle ABC = \angle D + \angle BCD$ $60^\circ = \angle D + 30^\circ$ \Rightarrow $\angle D = 30^{\circ}$...(*ii*) \Rightarrow $\angle DCB = \angle D = 30^{\circ}$ [From (*i*), (*ii*)] ... BD = BC [:: Sides opposite to equal angles are \Rightarrow equal in a triangle] Hence, proved.

Hence, proved.

Q10. In the given figure, the common tangents, AB and CD to two circles with centres O and O' intersect at E. Prove that the points O, E and O' are collinear.

Sol. Given: Two circles (non intersecting) with their centres O and O'.

Two common tangents AB and CD intersect at E between the circles.

To prove: O, E, O' points are collinear.

Construction: Join OA, OC, O'D, O'B and EO and EO'

Proof: In \triangle AEO and \triangle CEO, OE = OE[Common] OA = OC[Radii of same circle] EA = EC[Tangents from an external point to a circle are equal in length] $\angle OEA \cong \angle OEC$ [By SSS criterion of congruence] ... \Rightarrow ∠OEA = ∠OEC [CPCT] $\angle 1 = \angle 2$ [CPCT] ... Similarly, $\angle 5 = \angle 6$ $\angle 3 = \angle 4$ and [Vertically opposite angles] Since sum of angles at a point = 360° $\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 = 360^{\circ}$... $2(\angle 1 + \angle 3 + \angle 5) = 360^{\circ}$ \Rightarrow $\angle 1 + \angle 3 + \angle 5 = 180^{\circ}$ \Rightarrow $\angle OEO' = 180^{\circ}$ \Rightarrow : OEO' is a straight line. Hence, O, E and O' are collinear. Q11. In the given figure, O is the centre of a circle of radius 5 cm. T is a point such that OT = 13 cm and OT intersects the circle at E. If AB E is the tangent to the circle at E, find the length of AB. B OP = OO = 5 cmSol. Р OT = 13 cmOP and PT are radius and 5 cm tangent respectively at contact point P. E 13 cm *.*.. $\angle OPT = 90^{\circ}$ Ę So, by Pythagoras theorem, in right angled $\triangle OPT$, В Ο $PT^2 = OT^2 - OP^2 = 13^2 - 5^2$ = 169 - 25 = 144PT = 12 cm. \Rightarrow AP and AE are two tangents from an external point A to a circle. AP = AE... AEB is tangent and OE is radius at contact point E. So. AB⊥ OT ...(*i*) So, by Pythagoras theorem, in right angled ΔAET , $AE^2 = AT^2 - ET^2$ $AE^{2} = (PT - PA)^{2} - [TO - OE]^{2}$ \Rightarrow

 $= (12 - AE)^2 - (13 - 5)^2$ $AE^2 = (12)^2 + (AE)^2 - 2(12)(AE) - (8)^2$ $\Rightarrow AE^2 - AE^2 + 24AE = 144 - 64$ 24AE = 80 \Rightarrow AE = $\frac{80}{24}$ cm \Rightarrow AE = $\frac{10}{3}$ cm \rightarrow In Δ TPO and Δ TQO, OT = OT[Common] PT = QT[Tangents from T] OP = OQ[Radii of same circle] ... $\Delta TPO \cong \Delta TQO$ [By SSS criterion of congruence] \Rightarrow ∠1 = ∠2 ...(*ii*) [CPCT] In Δ ETA and Δ ETB, ET = ET[Common] $\angle TEA = \angle TEB = 90^{\circ}$ [From (*i*)] $\angle 1 = \angle 2$ [CPCT] [From (*ii*)] $\Delta ETA \cong \Delta ETB$ [By ASA criterion of congruence] ... AE = BE[CPCT] \Rightarrow $AB = 2AE = 2 \times \frac{10}{3}$ $AB = \frac{20}{3} \text{ cm}.$ \Rightarrow \Rightarrow Hence, the required length is $\frac{20}{2}$ cm. Q12. The tangent at a point C of a circle and a diameter AB when extended intersect at P. If $\angle PCA = 110^\circ$, find $\angle CBA$. р В [Hint: Join C with centre O]. Sol. OC and CP are radius and tangent respectively at contact point C. $\angle OCP = 90^{\circ}$ So, $\angle OCA = \angle ACP - \angle OCP$ $\angle OCA = 110^{\circ} - 90^{\circ}$ \Rightarrow ∠OCA = 20° \Rightarrow In ∆OAC, OA = OC[Radii of same circle] $\angle OCA = \angle A = 20^{\circ}$ [:: Angles opposite to equal sides ... are equal]

CP and CB are tangent and chord of a circle. $\angle CBP = \angle A$ [Angles in alternate segments are equal] In ΔCAP , $\angle P + \angle A + \angle ACP = 180^{\circ}$ [Angle sum property of a triangle] $\angle P + 20^{\circ} + 110^{\circ} = 180^{\circ}$ \Rightarrow $\angle P = 180^{\circ} - 130^{\circ}$ \Rightarrow $\angle P = 50^{\circ}$ \Rightarrow In $\triangle BPC$, Exterior angle \angle CBA = \angle P + \angle BCP \Rightarrow $\angle CBA = 50^{\circ} + 20^{\circ}$ \Rightarrow $\angle CBA = 70^{\circ}$ **Q13.** If an isosceles \triangle ABC in which AB = AC = 6 cm is inscribed in a circle of radius 9 cm, find the area of the triangle. **Sol.** In figure, \triangle ABC has AB = AC = 6 cm. In $\triangle OAB$ and $\triangle OAC$, AB = AC[Given] OA = OA[Common] OB = OC [Radii of same circle] r = 9 cm9 cm $\triangle OAB \cong \triangle OAC$ *.*.. \cap [By SSS criterion of congruence] $\angle 1 = \angle 2$ [CPCT] \Rightarrow In \triangle AMC and \triangle AMB. $\angle 1 = \angle 2$ [Proved above] AM = AM [Common] AB = AC[Given] $\Delta AMB \cong \Delta AMC$ [By SAS criterion of congruence] ... $\angle AMB = \angle AMC = 90^{\circ}$ [CPCT and Linear pair axiom] \Rightarrow $\frac{1}{2}$ BC × AM Now, Area of $\triangle ABC =$ Let BM = x and AM = y, then MO = OA - AMMO = OA - AM \Rightarrow \Rightarrow MO = 9 - yIn right angled Δ BMA and Δ BMO, $x^2 + y^2 = 6^2$...(*i*) [By Pythagoras theorem] $x^2 + (9 - y)^2 = 9^2$ $x^{2} + (9)^{2} + (y)^{2} - 2(9)(y) = 81$ $x^2 + 81 + y^2 - 18y = 81$ $+ y^2 - 18y = 0$ x^2 ...(*ii*) Now, subtract (i) from (ii)

 $\begin{array}{rcr} x^2 &+ y^2 - 18y = \\ x^2 &+ y^2 &= \\ - &- \end{array}$ 0 36 -18y = -36 $y = \frac{-36}{-18}$ \Rightarrow $y = 2 \text{ cm} \implies AM = 2 \text{ cm}$ $x^2 + y^2 = 36$ \Rightarrow [From (*i*)] But, $x^2 + (-2) = 36$ \Rightarrow $x^2 = 36 - 4 = 32$ \Rightarrow $x = \sqrt{32} = 4\sqrt{2}$ cm \Rightarrow BC = $2x = 2 \times 4\sqrt{2} = 8\sqrt{2}$ cm ... (:: Perpendicular from centre to chord bisects the chord) Area of $\triangle ABC = \frac{1}{2} \times 2 \times 8\sqrt{2}$... Area of $\triangle ABC = 8\sqrt{2} \text{ cm}^2$ \Rightarrow Q14. A is a point at a distance 13 cm from the centre 'O' of a circle of radius 5 cm. AP and AQ are the tangents to circle at P and Q. If a tangent BC is drawn at point R lying on minor arc PQ to intersect AP at B and AQ at C. Find the perimeter of \triangle ABC. OA = 13 cm Sol. OP = OO = 5 cm 5_{cm} R OP and PA are radius and tangent respectively 13 cm at O contact point P. Ę *.*.. $\angle OPA = 90^{\circ}$ In right angled $\triangle OPA$ by Pythagoras theorem $PA^2 = OA^2 - OP^2 = 13^2 - 5^2 = 169 - 25 = 144$ \Rightarrow PA = 12 cmPoints A, B and C are exterior to the circle and tangents drawn from an external point to a circle are equal so PA = OABP = BRCR = COPerimeter of $\triangle ABC = AB + BC + AC$ = AB + BR + RC + AC[From figure] = AB + BP + CO + AC = AP + AO $= AP + AP = 2AP = 2 \times 12 = 24 \text{ cm}$ So, the perimeter of $\triangle ABC = 24$ cm.