Name ___ DANSH TUAPAR Class & Section X- G Roll No. 9

SUMMATIVE ASSESSMENT – I (2015-2016)

Class-X Subject-Maths

Time Allowed: 3 Hrs.

M.M.: 90

Please check the total marks

Do not write any answer on the question paper.

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
- 3. There is no overall choice in this question paper.
- 4. Use of calculator is not permitted.

SECTION-A

Question numbers 1 to 4 carry one mark each

In ΔDEW , $AB \parallel EW$. If AD = 4 cm, DE = 12 cm and DW = 24 cm, then find the value of DB.

2.7

Evaluate: cosθ.cosec (90° - θ)

-

What happens to value of $\sin\theta$ when θ increases from 0° to 90° ?

1

From the following frequency distribution, find the median class:

1

Cost of living index		1400- 1550	1550-1700	1700-1850	1850-2000	
Number of w	reeks	8	15	21	8	

SECTION-B

Question numbers 5 to 10 carry two marks each.

hours

Prove that $5 - \sqrt{2}$ is an irrational number

- 2

How many irrational numbers lie between $\sqrt{2}$ and $\sqrt{3}$? Write any two of them.

2

MATHS-X-1

5/BBN

2

$$5x + 4y = 9$$

$$x+2y=3$$

8

If D and E are points on the sides AB and AC of \triangle ABC such that 2 AD=6 cm, BD=9 cm, AE=8 cm, EC=12 cm, Prove that DE||BC.

Prove the following identity:

2

$$\frac{\cot x}{\csc x + 1} = \frac{\csc x - 1}{\cot x}$$

10

Find the mean of the following distribution:

Class interval	0-6	6-12	12-18	.18-24	24-30
Frequency	5	4	- 1	6	4

SECTION-C

Question numbers 11 to 20 carry three marks each.

11

The length, breadth and height of a room are 8 m 50 cm, 6 m 25 cm and 4 m 75 cm 3 respectively. Find the length of the longest rod that can measure the dimensions of the room exactly.

12

3x - 9y - 12 = 0 is given. Write another linear equation, so that the lines represented by the pair are:

(i)

intersecting

(ii)

coincident

m

parallel

13

If two zeroes of a polynomial $x^3 + 5x^2 + 7x + 3$ are -1 and -3, then find the third zero.

3

Find the two numbers whose sum is 75 and difference is 15.

3

In $\triangle ABC$, D is a point on side BC that $\angle ADC = \angle BAC$. Prove that $CA^2 = CB.CD$.

2

In a right angled $\triangle ABC$, $\angle B = 90^{\circ}$. If $\frac{BC}{AB} = \frac{1}{\sqrt{3}}$, then find $\frac{AB}{AC}$.

3

17,

If $b \cos \theta = a$, then prove that $\csc \theta + \cot \theta = \sqrt{\frac{b+a}{b-a}}$

3

MATHS-X-2

6/BBN

$$\frac{1+\sin\theta}{1-\sin\theta} = (\sec\theta + \tan\theta)^2$$

Following is the age distribution of cardiac patients admitted during a month in a hospital. 3
Find the missing frequency, if the mode is given to be 58.

Age (in years)		20-30	30-40	40-50	50-60	60-70	70-80
Number	of	5	13	x	20	18	19

The following data gives the information on the observed life times (in hours) of 150 electrical 3 components:

Life time (in hours)	0-20	20-40	40-60	60 - 80	80 - 100
Frequency	15	10	35	50	40

Find the mode of the distribution.

SECTION-D

Question numbers 21 to 31 carry four marks each.

Write the HCF and LCM of the smallest odd composite number and the smallest odd prime 4 number. If an odd no. p divides q² then will it divide q³ also? Explain.

Solve following pair of linear equations in x and y.

$$(a + b) x + (a - b) y = a^2 + 2ab + b^2$$

$$(a - b)(x + y) = a^2 + b^2$$

If their point of intersection lies on the line given by y = mx - a, find the value of m.

If a polynomial $x^4 - 3x^3 - 6x^2 + kx - 16$ is exactly divisible by $x^2 - 3x + 2$, then find the value of 4

Rahul donated some money and books to a school for poor children. Money and books can be 4 represented by the zeroes (i.e. α , β) of the polynomial $p(x) = x^2 - x - 2$. Akash who is friend of Rahul, also got inspired by him and donated the money and books in the form of a polynomial whose zeroes are $1 + 2\alpha$ and $1 + 2\beta$. Find the polynomial represented by Akash's donation?

Why Akash got inspired by Rahul?

In given figure, of \triangle ABC, D, E and F are points on AB, BC and AC respectively, such that 4 ADEF is a parallelogram, then prove that $\frac{CF}{FA} = \frac{AD}{BD}$.

In $\triangle ABC$, if $\angle ADE = \angle B$, then prove that $\triangle ADE \sim \triangle ABC$.

Also, if AD = 7.6 cm, AE = 7.2 cm, BE = 4.2 cm and BC = 8.4 cm, then find DE.

If $tan (A + B) = \sqrt{3}$ and $tan (A - B) = \frac{1}{\sqrt{3}}$, where $0 < A + B < 90^\circ$, A > B, find A and B. Also 4 calculate tan A.sin (A + B) + cos A.tan (A - B)

$$\frac{\tan A}{1-\cot A} + \frac{\tan (90^{\circ} - A)}{1-\tan A} = 1 + \sec A \csc A$$

Prove that:

$$\frac{\tan A}{1-\cot A} + \frac{\tan (90^{\circ} - A)}{1-\tan A} = 1 + \sec A \csc A$$

29

If
$$\sec \theta - \tan \theta = x$$
, show that :

 $\sec\theta = \frac{1}{2} \left[x + \frac{1}{x} \right]$ and $\tan\theta = \frac{1}{2} \left(\frac{1}{x} - x \right)$

(ii) If $sec\theta + tan \theta = x$, then show that :

$$\sec\theta = \frac{1}{2} \left[x + \frac{1}{x} \right]$$
 and $\tan\theta = \frac{1}{2} \left(x - \frac{1}{x} \right)$

Monthly expenditures of milk in 100 families of a housing society are given in the following 4 frequency distribution:

Monthly • expenditure (in ₹)	0-175	175- 350	350- 525	525- 700	700- 875	875- 1050	1050- 1225
Number of families	10	14	15	21	28	7	5

Find the mode and median for this distribution.

The following distribution gives the weights of 60 students of a class. Find the mean and 4 mode weights of the students.

Weight (in kg)	40-44	44-48	48-52	52-56	56-60	60-64	64-68	68-72	
Number of students	4	6	10	14	10	8	6.	2	