THE MOTHER'S INTERNATIONAL SCHOOL SUMMATIVE ASSESSMENT-I (2015-2016)

CLASS - X SUBJECT: MATHEMATICS 15th Sept. 2015

TIME: 3 HOURS

M.M:90

General Instructions:-

1. All Questions are Compulsory

2. The Question Paper consists of 31 questions, divided into 4 sections A, B, C & D.

Section A Comprises of 4 questions of 1 mark each.

Section B Comprises of 6 questions of 2 mark each.

Section C Comprises of 10 questions of 3 mark each.

Section D Comprises of 11 questions of 4 mark each.

Section - A (1 Mark each)

Q1. Find the median of the data if the mode is 18 and the mean is 24.

Q2. If Sec $4A = \text{Cosec}(A - 20^{\circ})$ where 4A is acute, then find the value of A.

Q3. If MN | QR, PM = xcm, MQ = 10cm, PN = (x - 2) cm, NR = 6cm, then find x.

Q4. If Cosec $\theta = 2x$ and Cot $\theta = \frac{2}{y}$, find the value of $4(x^2 - \frac{1}{y^2})$

Section - B (2 Mark each)

What type of decimal representation will the following numbers represent

(a) $\frac{180}{84}$ (b) $\frac{663}{1200}$

Q5.

Q6. Express EC in terms of x, y and z where AB = x, DE = y and BC = z.

Q7./	The annual Profit earned by 30 shops of a shopping Complex in a locality	give rise to the following
	distribution.	

Profit (in lakh Rs.)	No. of Shops
More than or equal to 5	30
More than or equal to 10	28
More than or equal to 15	16
More than or equal to 20	14
More than or equal to 25	10
More than or equal to 30	7
More than or equal to 35	3

Convert this data into a frequency distribution table.

- Q8. If one zero of the polynomial $2x^2 8x m$ is $\frac{5}{2}$, find the other zero and also, the value of m.
- Q9. Taking A = 30°, verify CosA = $\frac{1}{\sqrt{1+tan^2A}}$
- Q10. Find the HCF of 405 and 2520 using Euclid's division lemma.

Section - C (3 Marks each)

Q11. If
$$\alpha$$
 and β are zeros of $2x^2 - 3x + 2$, then form a quadratic polynomial whose zeroes are $\frac{\alpha^2}{\beta}$ and

Q12. Evaluate:
$$\frac{tan^260^0 + 4Sin^245^0 + 3Sec^230^0 + 5Cos^290^0}{Sin60^0 + Cos30^0}$$

Q13. Determine the value of 'k' so that the following system of linear equations has no solution:

$$(3k+1) x + 3y - 2 = 0$$

 $(k^2+1) x + (k-2)y - 5 = 0$

What will be the graphical representation of that system of equations?

Q14. Compute the modal age of the students appearing for an entrance test from the following data:

Age (in years)	No. of students				
16-18	50				
18-20	78				
20-22	46				
22-24	28				
24-26	23				

- Q15. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.
- Q16. Three measuring rods are 64cm, 80cm & 90cm in length. Find the least length of cloth that can be measured an exact number of times, using any of the rods.

Q17. Prove that :
$$\sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} = 2 \operatorname{Cosec} \theta$$
.

$$\frac{ax}{b} - \frac{by}{a} = a + b$$

$$ax - by = 2ab$$

Calculate the mean from the following data, using step-deviation method

Frequency
10
12
8
20
11
4
5

Q26. A girl of height 90cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6m above the ground, find the length of her shadow after 4 seconds.

Section - D (4 Mark each)

Q21. Obtain all the zeros of the polynomical
$$f(x) = 3x^4 + 6x^3 - 2x^2 - 10x - 5$$
, if two of the zeroes are $\sqrt{\frac{5}{3}}$ and $\sqrt{\frac{5}{3}}$.

Q23. Evaluate:
$$\frac{\sin 15^{\circ} \cos 75^{\circ} + \cos 15^{\circ} \sin 75^{\circ}}{\tan 5^{\circ} \tan 30^{\circ} \tan 35^{\circ} \tan 85^{\circ}} + \frac{4}{3} (Sec^{2} 59^{\circ} - \cot^{2} 31^{\circ})$$

Money saved (in Rs.)	0-10	10-20	20-30	30-40	40-50	50-60	60-70
No. of students	3	f_1	9	12	5	3	2

Find f_1 if the median of this data is 32.5. Also, mention the value depicted by the students.

Q26. Prove that
$$\sqrt{7}$$
 is an irrational number. Hence prove that $3-5\sqrt{7}$ is irrational.

$$3x + y + 1 = 0$$
$$2x - 3y + 8 = 0$$

Also, find the area of the triangle bounded by these lines and y axis.

Prove:
$$\frac{\tan \theta}{1-\cot \theta} + \frac{\cot \theta}{1-\tan \theta} = 1 + \sec \theta \cdot \csc \theta$$
.

Weight (in kg.)	20-25	25-30	30-35	35-40	40-45	45-50	50-55	55-60
No. of Students	4	6	12	8	10	14	2	4

Also, find median from the graph.

- Q30. If $\tan\theta + \sin\theta = m$ and $\tan\theta \sin\theta = n$ Show that $m^2 - n^2 = 4\sqrt{mn}$.
- Q31. In an equilateral triangle ABC, D is a point on BC such that BD = $\frac{1}{3}$ BC. Prove that $9AD^2 = 7AB^2$.

.....END.....