

BALVANTRAY MEHTA VIDYA BHAWAN (ASMA), PERIODIC TEST II (2017-18) CLASS-X SUBJECT- MATHS

DURATION: 3 HOURS

M.M.80

General Instructions:

- (i) All questions are compulsory.
- (ii) This question paper consists of 29 questions divided in four sections A,B,C,D.
- (iii) Question 1-6 in Section A are of 1 mark each, 7-12 in Section B are of 2 marks each, 13-22 in Section C are of 3 marks each and 23-30 in Section D are of 4 marks each.
- (iv) There is no overall choice.
- (iv) Use of calculator is not permitted

Section A

Questions from 1 to 6 are of 1 mark each.

- Q1. The length of the tangent from point A at a distance 5 cm from the centre is 4cm. Find the radius of the circle.
- Q2. Given the linear equation 2x + 3y 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is:
- (i) intersecting lines
- (ii) parallel lines
- Q3. Find $\sin 75^{\circ}$ by using the formula : $\sin (A + B) = \sin A \cos B + \cos A \sin B$
- Q4. Express 156 as a product of prime factors.
- Q5. Solve using quadratic/discreminent method: $\frac{1}{x} + x = 3$
- Q6. If HCF and LCM of two numbers are 5 and 200, and one of the number is 125. Find the other number.

Section B

Questions from 7 to 12 are of 2 marks each.

Q7. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Q8.If \triangle ABC is right angled at B, what is the value of sin (A+C).

Q9. The altitude of a right triangle is 7 cm less than its base. If the hypotenuse is 13 cm, find the other two sides.

CHO From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. Find the radius of the circle.

Q11. State and give reason for which of the following real no is rational and irrational number:

- i) 0.367367736777....
- ii) 2.98725738
- 1iii) 5/17
- iv) $\frac{35}{2^2 \times 5^2}$

Q12. Show that:

- i) tan 48° tan 23° tan 57° tan 42° = 1
- ii) $\sin 40^{\circ} \sin 50^{\circ} \cos 40^{\circ} \cos 50^{\circ} = 0$

Section C

Questions from 13 to 22 are of 3 marks each.

Q13. Use Euclid's division lemma to find the HCF of 135 and 225

Q14. A fraction become $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.

Q15. The weekly pocket money of the students of class X of a school are given in the following table:

Pocket Money (in rupees)	0-40	40-80	80-120	120-160	160-200	200-240
Number of Students	5	7	15	10	5	8

Find the median for the following data.

Q16. Find the roots of the quadratic equations by the method of completing the square: $2x^2 - 7x + 3 = 0$.

Q17. Prove that :
$$(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$$

Q18. If
$$\tan \theta = 7/8$$
, then find the value of : $(1 + \cos \theta) (1 - \cos \theta)$

$$(1 + \sin \theta) (1 - \sin \theta)$$

Q19.Ramesh can row downstream 20Km in 2 hours and upstream in 3 hours. find her speed of rowing in still water and the speed of the current.

Q20. Find all the zeros of
$$2x^4 - 3x^3 - 3x^2 + 6x - 2$$
, if two of it's zeros are $\sqrt{2}$ and $-\sqrt{2}$.

<u>O21.</u> Draw a triangle ABC in which AB = 5cm, BC = 6cm and angle ABC = 60° . Construct a triangle whose sides are 5/7 times the corresponding sides of triangle ABC.

Q22. Find the zeroes , α and β , of the quadratic polynomial $\frac{2^2-2\chi+3}{2}$. Hence find the polynomial whose zeroes are $\alpha+2$ and $\beta+2$. $2\chi^2+\chi$ 9-21=0

Section D

Questions from 23 to 30 are of 4 marks each.

Q23. Find the mean and mode of the following data:

Class Interval	0-20	20-40	40-60	60-80	80-100	100-120	120-140
Frequency	6	8	10	12	6	5	3

Q24. Draw a circle of radius 3 cm. From a point P, 7 cm away from its centre draw two tangents to the circle. Measure the length of the tangents.

Q25. Show that $3\sqrt{2}$ is an irrational number.

Q26. Use Euclid division lemma to show that the cube of any positive integer is of the form 9m,9m+1,9m+8.

Q27 Solve the following pair of equation graphically:

$$3x - y = 7$$

$$2x + 5y + 1 = 0$$

Also state the nature of the solution, whether it is consistent, dependent or inconsistent .

Q28. A statue 1.46 m tall, stands on the top of the pedestal. from a point on the ground, the angle of elevation on the top of the statue is 60° and from the same point , the angle of elevation of the top of the pedestal is 45°. find the height of the pedestal. [Use $\sqrt{3} = 1.73$]

Q29. Two concentric circles are of radii 3cm and 5cm. Find the length of the chord of the larger circle which touches the smaller circle.

Q30. The area of a rectangle get reduced by 9 square units, if it's length is reduced by 5 units and breadth by 3 units. if we increase the length by 3 units and the breadth by 2 units, the area increases by 67 square units. find the dimension of the rectangle.