EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Give an example of a statement $\mathrm{P}(n)$ which is true for all $n \geq 4$ but $\mathrm{P}(1), \mathrm{P}(2)$ and $\mathrm{P}(3)$ are not true. Justify your answer.
Sol. The required statement is $\mathrm{P}(n)=2 n<n$!
Justification: $\mathrm{P}(n): 2 n<n$!

$$
\begin{aligned}
& P(1): 2.1<1!\Rightarrow 2<1 \text { not true } \\
& P(2): 2.2<2!\Rightarrow 4<2.1 \Rightarrow 4<2 \text { not true } \\
& P(3): 2.3<3!\Rightarrow 6<3.2 .1 \Rightarrow 6<6 \text { not true } \\
& P(4): 2.4<4!\Rightarrow 8<4.3 .2 .1 \Rightarrow 8<24 \text { True } \\
& P(5): 2.5<5!\Rightarrow 10<5.4 .3 .2 .1 \Rightarrow 10<120 \text { True }
\end{aligned}
$$

Hence, $\mathrm{P}(n)=2 n<n!$ is not true for $\mathrm{P}(1), \mathrm{P}(2)$ and $\mathrm{P}(3)$ but it is true for all values of $n \geq 4$.
Q2. Give an example of a statement $\mathrm{P}(n)$ which is true for all n. Justify your answer.
Sol. The required statement is
$\mathrm{P}(n): 1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Justification: $\mathrm{P}(1): \quad 2 \quad 1=\frac{1(1+1)}{2}$
$\mathrm{P}(k): \quad 1+2+3+\ldots+k=\frac{k(k+1)}{2}$. Let it be true.
$\mathrm{P}(k+1): 1+2+3+\ldots+k+(k+1)$

$$
\begin{aligned}
& =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.

Prove each of the statements in Exercise 3 to 6 by the principle of Mathematical Induction.

Q3. $4^{n}-1$ is divisible by 3 , for each natural number n.
Sol. Let $\mathrm{P}(n): 4^{n}-1$
Step 1: $\quad P(1)=4-1=3$ which is divisible by 3 , so it is true.
Step 2: $\quad P(2)=4^{k}-1=3 \lambda$. Let it be true.

Step 3: $P(k+1)=4^{k+1}-1$

$$
\begin{aligned}
& =4^{k} .4-1=4.4^{k}-4+3=4\left(4^{k}-1\right)+3 \\
& =4(3 \lambda)+3 \quad \text { (from Step 2) } \\
& =3[4 \lambda+1] \text { which is true as it is divisible by } 3 .
\end{aligned}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q4. $2^{3 n}-1$ is divisible by 7 , for all natural numbers n.
Sol. Let $\mathrm{P}(n): 2^{3 n}-1$
Step 1: $\quad P(1)=2^{3.1}-1=8-1=7$ which is divisible by 7 .
So, $\mathrm{P}(1)$ is true.
Step 2: $\quad P(k)=2^{3 k}-1=7 \lambda$. Let it be true.
Step 3: $P(k+1)=2^{3(k+1)}-1$

$$
\begin{aligned}
& =2^{3 k+3}-1=2^{3} \cdot 2^{3 k}-8+7=8.2^{3 k}-8+7 \\
& \left.=8\left(2^{3 k}-1\right)+7 \quad \text { (from Step } 2\right) \\
& =8.7 \lambda+7 \\
& =7(8 \lambda+1) \text { which is true as it is divisible by } 7
\end{aligned}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q5. $n^{3}-7 n+3$ is divisible by 3 , for all natural numbers n.
Sol. Let $\mathrm{P}(n): n^{3}-7 n+3$
Step 1:

$$
P(1)=(1)^{3}-7(1)+3
$$

$=1-7+3=-3$ which is divisible by 3 .
So, it is true for $\mathrm{P}(1)$.
Step 2: $\mathrm{P}(k): k^{3}-7 k+3=3 \lambda$. Let it be true.
$\Rightarrow \quad k^{3}=3 \lambda+7 k-3$
Step 3: $\quad \mathrm{P}(k+1)=(k+1)^{3}-7(k+1)+3$
$=k^{3}+1+3 k^{2}+3 k-7 k-7+3$
$=k^{3}+3 k^{2}-4 k-3$
$=(3 \lambda+7 k-3)+3 k^{2}-4 k-3 \quad$ (from Step 2$)$
$=3 k^{2}+3 k+3 \lambda-6$
$=3\left(k^{2}+k+\lambda-2\right)$ which is divisible by 3 .
So it is true for $\mathrm{P}(k+1)$.
Hence, $\mathrm{P}(k+1)$ is true whenever it is true for $\mathrm{P}(k)$.
Q6. $3^{2 n}-1$ is divisible by 8 , for all natural numbers n.
Sol. Let $\mathrm{P}(n): 3^{2 n}-1$
Step 1: $P(1): 3^{2}-1=9-1=8$ which is divisible by 8 .
So, it is true for $\mathrm{P}(1)$.
Step 2: $\quad P(k)=3^{2 k}-1=8 \lambda$. Let it be true.
Step 3: $\mathrm{P}(k+1)=3^{2(k+1)}-1$

$$
\begin{aligned}
& =3^{2 k+2}-1=3^{2} \cdot 3^{2 k}-9+8=9\left(3^{2 k}-1\right)+8 \\
& =9.8 \lambda+8 \quad(\text { from Step } 2) \\
& =8[9 \lambda+1] \text { which is divisible by } 8 .
\end{aligned}
$$

So it is true for $\mathrm{P}(k+1)$.
Hence, $\mathrm{P}(k+1)$ is true whenever it is true for $\mathrm{P}(k)$.

Q7. For any natural number $n, 7^{n}-2^{n}$ is divisible by 5 .
Sol. Let $\mathrm{P}(n): 7^{n}-2^{n}$
Step 1: $P(1): 7^{1}-2^{1}=5$ which is divisible by 5 .
So it is true for $\mathrm{P}(1)$.
Step 2: $\mathrm{P}(k): 7^{k}-2^{k}=5 \lambda$. Let it be true for $\mathrm{P}(k)$.
Step 3: $P(k+1)=7^{k+1}-2^{k+1}$

$$
\begin{aligned}
& =7^{k+1}+7^{k} \cdot 2-7^{k} \cdot 2-2^{k+1} \\
& \left.=\left(7^{k+1}-7^{k} \cdot 2\right)+7^{k} \cdot 2-2^{k+1}\right) \\
& =7^{k}(7-2)+2 \cdot\left(7^{k}-2^{k}\right) \quad(\text { from Step 2) } \\
& =5.7^{k}+2.5 \lambda \\
& =5\left(7^{k}+2 \lambda\right) \text { which is divisible by } 5 .
\end{aligned}
$$

So, it is true for $\mathrm{P}(k+1)$.
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q8. For any natural number $n, x^{n}-y^{n}$ is divisible by $x-y$, where x and y are any integers with $x \neq y$.
Sol. Let $\mathrm{P}(n): x^{n}-y^{n}$
Step 1: $\mathrm{P}(1): x^{1}-y^{1}=x-y$ which is divisible by $x-y$.
So $P(1)$ is true.
Step 2: $\mathrm{P}(k): x^{k}-y^{k}=(x-y) \lambda$. Let it be true.
Step 3: $\mathrm{P}(k+1)=x^{k+1}-y^{k+1}=x^{k+1}-x^{k} y-x^{k} y-y^{k+1}$
$=\left(x^{k+1}-x^{k} y\right)+\left(x^{k} y-y^{k+1}\right)$

$$
=x^{k}(x-y)+y\left(x^{k}-y^{k}\right)
$$

$$
=x^{k}(x-y)+y \cdot(x-y) \lambda \quad(\text { from Step } 2)
$$

$=(x-y)\left(x^{k}+y \lambda\right)$ which is divisible by $(x-y)$.
So, it is true for $\mathrm{P}(k+1)$.
Q9. $n^{3}-n$ is divisible by 6 , for each natural number $n \geq 2$.
Sol. Let $\mathrm{P}(n): n^{3}-n$
Step 1: $P(2): 2^{3}-2=6$ which is divisible by 6 . So it is true for $P(2)$.
Step 2: $\mathrm{P}(k): k^{3}-k=6 \lambda$. Let it be true for $k \geq 2$
$\Rightarrow \quad k^{3}=6 \lambda+k$
Step 3: $\quad P(k+1)=(k+1)^{3}-(k+1)$

$$
\begin{align*}
& =k^{3}+1+3 k^{2}+3 k-k-1 \tag{i}\\
& =k^{3}-k+3\left(k^{2}+k\right) \\
& =6 \lambda+3\left(k^{2}+k\right) \tag{i}
\end{align*}
$$

We know that $3\left(k^{2}+k\right)$ is divisible by 6 for every value of $k \in \mathrm{~N}$. Hence $P(k+1)$ is true whenever $P(k)$ is true.
Q10. $n\left(n^{2}+5\right)$ is divisible by 6 , for each natural number n.
Sol. Let $\mathrm{P}(n): n\left(n^{2}+5\right)$
Step 1: $P(1): 1(1+5)=6$ which is divisible by 6 . So it is true for $P(1)$.
Step 2: $P(k): k\left(k^{2}+5\right)=6 \lambda$. Let it be true.

Chapter 4 - Principle of
Mathematical Induction

$$
\begin{align*}
\Rightarrow & k^{3}+5 k & =6 \lambda \\
\Rightarrow & k^{3} & =6 \lambda-5 k \tag{i}
\end{align*}
$$

Step 3:

$$
\begin{aligned}
\mathrm{P}(k+1) & =(k+1)\left[(k+1)^{2}+5\right] \\
& =(k+1)\left[k^{2}+1+2 k+5\right] \\
& =(k+1)\left[k^{2}+2 k+6\right] \\
& =k^{3}+2 k^{2}+6 k+k^{2}+2 k+6 \\
& =k^{3}+3 k^{2}+8 k+6 \\
& =k^{3}+5 k+3 k^{2}+3 k+6 \\
& =6 \lambda-5 k+5 k+3\left(k^{2}+k+2\right) \\
& =6 \lambda+3\left(k^{2}+k+2\right)
\end{aligned}
$$

We know that $k^{2}+k+2$ is divisible by 2 for each value of $k \in \mathrm{~N}$, so, let $k^{2}+k+2=2 m$.
So $\quad \mathrm{P}(k+1)=6 \lambda+3.2 m=6(\lambda+m)$ which is divisible by 6 . Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q11. $n^{2}<2^{n}$, for all natural numbers $n \geq 5$.
Sol. Let $\mathrm{P}(n): n^{2}<2^{n}$ for all natural numbers, $n \geq 5$
Step 1: $\mathrm{P}(5): 1^{5}<2^{5} \Rightarrow 1<32$ which true for $\mathrm{P}(5)$.
Step 2: $\mathrm{P}(k): k^{2}<2^{k}$. Let it be true for $k \in \mathrm{~N}$.
Step 3: $\mathrm{P}(k+1): \quad(k+1)^{2}<2^{k+1}$
From Step 2, we get

$$
k^{2}<2^{k}
$$

$\Rightarrow \quad k^{2}+2 k+1<2^{k}+2 k+1$
$\Rightarrow \quad(k+1)^{2}<2^{k}+2 k+1$
Since
$(2 k+1)<2^{k}$
So
$k^{2}+2 k+1<2^{k}+2^{k}$
$\Rightarrow \quad k^{2}+2 k+1<2.2^{k}$
$\Rightarrow \quad k^{2}+2 k+1<2^{k+1}$
From eqn. (i) and (ii), we get $(k+1)^{2}<2^{k+1}$.
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true for $k \in \mathrm{~N}, n \geq 5$.
Q12. $2 n<(n+2)$! for all natural number n.
Sol. Let $\mathrm{P}(n): 2 n<(n+2)$! for all $k \in \mathrm{~N}$.
Step 1: $\mathrm{P}(1)$:
$2.1<(1+2)$!
$2<3!\Rightarrow 2<6$ which is true for $\mathrm{P}(1)$
$(\because 3!=3 \times 2 \times 1=6)$
Step 2: $\mathrm{P}(k)$:
$2 k<(k+2)$!. Let it be true for $\mathrm{P}(k)$
Step 3: $\mathrm{P}(k+1): \quad 2(k+1)<(k+1+2)$!
Since $\quad 2 k<(k+2)!\quad$ (from Step 2)
$\Rightarrow \quad 2 k+2<(k+2)!+2$
\Rightarrow
$2(k+1)<(k+2)!+2$
Also, $\quad(k+2)!+2<(k+3)!$
$\therefore \quad 2(k+1)<(k+3)!$

Chapter 4 - Principle of
Mathematical Induction

NCERT Exemplar - Class 11

$\Rightarrow \quad 2(k+1)<(k+2+1)$! which is true for $\mathrm{P}(k+1)$
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q13. $\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}$ for all natural numbers $n \geq 2$.
Sol. Let $\mathrm{P}(n)$:

$$
\sqrt{n}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}, \forall n \geq 2
$$

Step 1: $\mathrm{P}(2): \quad \sqrt{2}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}$ which is true.
Step 2: $\mathrm{P}(k): \quad \sqrt{k}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}}$. Let it be true.
Step 3: $\mathrm{P}(k+1): \sqrt{k+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k+1}}$
From Step 2, we have

$$
\sqrt{k}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}}
$$

$$
\Rightarrow \quad \sqrt{k}+\frac{1}{\sqrt{k+1}}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}
$$

$\Rightarrow \quad \frac{\sqrt{k} \cdot \sqrt{k+1}+1}{\sqrt{k+1}}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+1}}$
Now if

$$
\begin{equation*}
\sqrt{k+1}<\frac{\sqrt{k} \cdot \sqrt{k+1}+1}{\sqrt{k+1}} \tag{i}
\end{equation*}
$$

$$
\Rightarrow \quad(k+1)<\sqrt{k} \cdot \sqrt{k+1}+1
$$

$$
\begin{equation*}
\Rightarrow \quad k<\sqrt{k} \cdot \sqrt{k+1} \tag{ii}
\end{equation*}
$$

From eqn. (i) and (ii) we get

$$
\sqrt{k+1}<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{k+1}}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q14. $2+4+6+\ldots+2 n=n^{2}+n$, for all natural numbers n.
Sol. Let $\mathrm{P}(n): \quad 2+4+6+\ldots+2 n=n^{2}+n, \forall n \in \mathrm{~N}$
Step 1: $\mathrm{P}(1): \quad 2=1^{2}+1=2$ which is true for $\mathrm{P}(1)$
Step 2: $\mathrm{P}(k): 2+4+6+\ldots+2 k=k^{2}+k$. Let it be true.
Step 3: $\mathrm{P}(k+1): 2+4+6+\ldots+2 k+2 k+2$

$$
\begin{aligned}
& =k^{2}+k+2 k+2=k^{2}+3 k+2 \\
& =k^{2}+2 k+k+1+1 \\
& =(k+1)^{2}+(k+1)
\end{aligned}
$$

Which is true for $\mathrm{P}(k+1)$
So, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.

Q15. $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$ for all natural numbers n.
Sol. Let $\mathrm{P}(n): 1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1, n \in \mathrm{~N}$.
$\mathrm{P}(n): 2^{0}+2^{1}+2^{2}+\ldots+2^{n}=2^{n+1}-1$
Step 1: $P(1)=2^{0}=2^{0+1}-1=2-1=1=2^{0}$ which is true.
Step 2: $P(k)=2^{0}+2^{1}+2^{2}+\ldots+2^{k}=2^{k+1}-1$. Let it be true.
Step 3: $\mathrm{P}(k+1)=2^{0}+2^{1}+2^{2}+\ldots+2^{k}+2^{k+1}$.

$$
\begin{aligned}
& =2^{k+1}-1+2^{k+1}=2.2^{k+1}-1=2^{k+2}-1 \\
& =2^{(k+1)+1}-1 \text { which is true for } \mathrm{P}(k+1)
\end{aligned}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q16. $1+5+9+\ldots+(4 n-3)=n(2 n-1)$, for all natural numbers n.
Sol. Let $\mathrm{P}(n): 1+5+9+\ldots+(4 n-3)=n(2 n-1), \forall n \in \mathrm{~N}$
Step 1: $\mathrm{P}(1)$:
$1=1(2.1-1)=1$ which is true for $P(1)$
Step 2: $\mathrm{P}(k): 1+5+9+\ldots+(4 k-3)=k(2 k-1)$. Let it be true.
Step 3: $\mathrm{P}(k+1): 1+5+9+\ldots+(4 k-3)+(4 k+1)$

$$
\begin{aligned}
& =k(2 k-1)+(4 k+1)=2 k^{2}-k+4 k+1 \\
& =2 k^{2}+3 k+1=2 k^{2}+2 k+k+1 \\
& =2 k(k+1)+1(k+1)=(2 k+1)(k+1) \\
& =(k+1)(2 k+2-1)=(k+1)[2(k+1)-1]
\end{aligned}
$$

Which is true for $\mathrm{P}(k+1)$.
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q17. A sequence $a_{1}, a_{2}, a_{3} \ldots$ is defined by letting $a_{1}=3$ and $a_{k}=7 a_{k-1}$ for all natural numbers $k \geq 2$. Show that $a_{n}=3.7^{n-1}$ for all natural numbers.
Sol. Given that:

$$
\begin{aligned}
& a_{1}=3 \\
& a_{2}=7 a_{2-1}=7 \cdot a_{1}=7 \cdot 3=21 \\
& a_{3}=7 \cdot a_{3-1}=7 \cdot a_{2}=7 \cdot 21=147
\end{aligned}
$$

Let $\quad \mathrm{P}(n): a_{n}=3.7^{n-1}, \forall n \in \mathrm{~N}$
Step 1: $\mathrm{P}(2): \quad a_{2}=3.7^{2-1}=21 \Rightarrow 21=21$ which is true for $\mathrm{P}(2)$.
Step 2: $\mathrm{P}(k): \quad a_{k}=3.7^{k-1}$. Let it be true.
Step 3: $\quad a_{k}=7 a_{k-1} \quad$ (given)
Put

$$
\hat{k}=k+1
$$

$$
a_{k+1}=7 a_{k}=7\left(3.7^{k-1}\right)=3.7^{k+1-1}=3.7^{(k+1)-1}
$$

which is true for $\mathrm{P}(k+1)$
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q18. A sequence $b_{0}, b_{1}, b_{2}, \ldots$ is defined by letting $b_{0}=5$ and $b_{k}=4+b_{k-1}$ for all natural numbers k. Show that $b_{n}=5+4 n$ for all natural number n using Mathematical Induction.
Sol. We have $b_{0}=5$ and $b_{k}=4+b_{k-1}$
$\Rightarrow b_{0}=5, b_{1}=4+b_{0}=4+5=9$ and $b_{2}=4+b_{1}=4+9=13$
Let $\mathrm{P}(n): b_{n}=5+4 n$
Step 1: $\mathrm{P}(1): \quad b_{1}=5+4=9 \Rightarrow 9=9$ which is true.

Step 2: $\mathrm{P}(k): \quad b_{k}=5+4 k$. Let it be true $\forall k \in \mathrm{~N}$
Step 3: Given that:

$$
\begin{array}{ll}
& \mathrm{P}(k)=4+b_{k-1} \\
\Rightarrow & \mathrm{P}(k+1)=4+b_{k+1-1} \\
\Rightarrow & \mathrm{P}(k+1)=4+b_{k}=4+5+4 k \\
\Rightarrow & \mathrm{P}(k+1)=5+4(k+1) \text { which is true for } \mathrm{P}(k+1)
\end{array}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q19. A sequence $d_{1}, d_{2}, d_{3}, \ldots$ is defined by letting $d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{}$ for all natural numbers $k \geq 2$. Show that $d_{n}=\frac{2}{n!}$ for all $n \in \mathbb{N}$.
Sol. Given that: $\quad d_{1}=2$ and $d_{k}=\frac{d_{k-1}}{k}$
Let $\mathrm{P}(n): \quad d_{n}=\frac{2}{n!}$
Step 1: $\mathrm{P}(1): \quad d_{1}=\frac{2}{1!}=2$ which is true for $\mathrm{P}(1)$.
Step 2: $\mathrm{P}(k): \quad d_{k}=\frac{2}{k!}$. Let it be true for $\mathrm{P}(k)$.
Step 3: Given that: $d_{k}=\frac{d_{k-1}}{k}$

$$
\begin{array}{ll}
\therefore & d_{k+1}=\frac{d_{k+1-1}}{k+1}=\frac{d_{k}}{k+1} \\
\Rightarrow & d_{k+1}=\frac{1}{k+1} \cdot d_{k}=\frac{1}{k+1} \cdot \frac{2}{k!} \\
\Rightarrow & d_{k+1}=\frac{2}{(k+1)!} \text { Which is true for } \mathrm{P}(k+1)
\end{array}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q20. Prove that for all $n \in \mathrm{~N}$.

$$
\begin{aligned}
\cos \alpha+\cos (\alpha+\beta)+ & \cos (\alpha+2 \beta)+\ldots+\cos (\alpha+(n-1) \beta) \\
& =\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right] \sin \left[\frac{n \beta}{2}\right]}{\sin \frac{\beta}{2}}
\end{aligned}
$$

Sol. Let $\mathrm{P}(n): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(n-1) \beta]$

$$
=\frac{\cos \left[\alpha+\left(\frac{n-1}{2}\right) \beta\right]\left[\sin \frac{n \beta}{2}\right]}{\sin \frac{\beta}{2}}
$$

Step 1: $P(1): \cos \alpha=\frac{(\cos \alpha)\left(\sin \frac{\beta}{2}\right)}{\sin \frac{\beta}{2}}=\cos \alpha$
which is true for $P(1)$
Step 2: $P(k): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta]$
$=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \left(\frac{k \beta}{2}\right)}{\sin \frac{\beta}{2}}$. Let it be true.
Step 3: $P(k+1): \cos \alpha+\cos (\alpha+\beta)+\cos (\alpha+2 \beta)+\ldots+\cos [\alpha+(k-1) \beta]$
$+\cos [\alpha+(k+1-1) \beta]$
$=\frac{\cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \left(\frac{k \beta}{2}\right)}{\sin \frac{\beta}{2}}+\cos (\alpha+k \beta) \quad$ (from Step 2)
$=\frac{2 \cos \left[\alpha+\left(\frac{k-1}{2}\right) \beta\right] \sin \left(\frac{k \beta}{2}\right)+2 \cos (\alpha+k \beta) \cdot \sin \frac{\beta}{2}}{2 \sin \frac{\beta}{2}}$
$=\frac{\sin \left[\alpha+k \beta-\frac{\beta}{2}\right]-\sin \left[\alpha-\frac{\beta}{2}\right]+\sin \left[\alpha+k \beta+\frac{\beta}{2}\right]-\sin \left[\alpha+k \beta-\frac{\beta}{2}\right]}{2 \sin \frac{\beta}{2}}$ $[\because 2 \cos A \sin B=\sin (A+B)-\sin (A-B)]$
$=\frac{\sin \left[\alpha+k \beta+\frac{\beta}{2}\right]-\sin \left(\alpha-\frac{\beta}{2}\right)}{2 \sin \frac{\beta}{2}}$
$=\frac{2 \cos \left(\alpha+\frac{k \beta}{2}\right) \sin (k+1) \frac{\beta}{2}}{2 \sin \frac{\beta}{2}}$

$$
\left[\because \sin A-\sin B=2 \cos \frac{A+B}{2} \cdot \sin \frac{A-B}{2}\right]
$$

$=\frac{\cos \left(\alpha+\frac{k \beta}{2}\right) \cdot \sin (k+1) \frac{\beta}{2}}{\sin \frac{\beta}{2}}$

Chapter 4 - Principle of
Mathematical Induction
$=\frac{\cos \left[\alpha+\left(\frac{k+1-1}{2}\right) \beta\right] \sin \left(\frac{k+1}{2}\right) \beta}{\sin \frac{\beta}{2}}$ which is true for $P(k+1)$
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q21. Prove that: $\cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}$, for all $n \in \mathrm{~N}$.
Sol. Let $\mathrm{P}(n): \cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{n-1} \theta=\frac{\sin 2^{n} \theta}{2^{n} \sin \theta}, \forall n \in \mathrm{~N}$.
Step 1: $\mathrm{P}(1): \cos \theta=\frac{\sin 2^{1} \theta}{2^{1} \sin \theta}=\frac{\sin 2 \theta}{2 \sin \theta}=\frac{2 \sin \theta \cos \theta}{2 \sin \theta}=\cos \theta$
$\Rightarrow \quad \cos \theta=\cos \theta$ which is true for $\mathrm{P}(1)$
Step 2: $\mathrm{P}(k): \cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{k-1} \theta=\frac{\sin 2^{k} \theta}{2^{k} \sin \theta}$
Let it be true for $\mathrm{P}(k)$.
Step 3: $\mathrm{P}(k+1): \cos \theta \cdot \cos 2 \theta \cdot \cos 2^{2} \theta \ldots \cos 2^{k-1} \theta \cdot \cos 2^{(\mathrm{k}+1)-1} \theta$

$$
\begin{aligned}
& =\frac{\sin 2^{k} \theta}{2^{k} \sin \theta} \cdot \cos 2^{(k+1)-1} \theta=\frac{\sin 2^{k} \theta}{2^{k} \sin \theta} \cdot \cos 2^{k} \theta \\
& =\frac{2 \sin 2^{k} \theta \cdot \cos 2^{k} \theta}{2 \cdot 2^{k} \sin \theta} \\
& =\frac{\sin 2 \cdot 2^{k} \theta}{2^{k+1} \sin \theta} \quad[\because 2 \sin \theta \cos \theta=\sin 2 \theta] \\
& =\frac{\sin 2^{k+1} \theta}{2^{k+1} \sin \theta} \text { which is true for } \mathrm{P}(k+1)
\end{aligned}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q22. Prove that $\sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta$

$$
=\frac{\sin \frac{n \theta}{2} \cdot \sin \frac{n+1}{2} \theta}{\sin \frac{\theta}{2}}, \text { for all } n \in \mathrm{~N}
$$

Sol. Let $\mathrm{P}(n): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin n \theta$

$$
=\frac{\sin \frac{n \theta}{2} \cdot \sin \left(\frac{n+1}{2}\right) \theta}{\sin \frac{\theta}{2}}, n \in \mathrm{~N} .
$$

Step 1: $\mathrm{P}(1): \sin \theta=\frac{\sin \frac{\theta}{2} \cdot \sin \left(\frac{1+1}{2}\right) \theta}{\sin \frac{\theta}{2}}=\frac{\sin \frac{\theta}{2} \cdot \sin \theta}{\sin \frac{\theta}{2}}=\sin \theta$
$\therefore \quad \sin \theta=\sin \theta$ which is true for $\mathrm{P}(1)$.
Step 2: $\mathrm{P}(k): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin k \theta$

$$
=\frac{\sin \frac{k \theta}{2} \cdot \sin \left(\frac{k+1}{2}\right) \theta}{\sin \frac{\theta}{2}} . \text { Let it be true for } \mathrm{P}(k)
$$

Step 3: $\mathrm{P}(k+1): \sin \theta+\sin 2 \theta+\sin 3 \theta+\ldots+\sin (k+1) \theta$

$$
\begin{aligned}
& =\frac{\sin \frac{k \theta}{2} \cdot \sin \left(\frac{k+1}{2}\right) \theta}{\sin \frac{\theta}{2}}+\sin (k+1) \theta \\
& =\frac{\sin \frac{k \theta}{2} \cdot \sin \left(\frac{k+1}{2}\right) \theta+\sin (k+1) \theta \cdot \sin \frac{\theta}{2}}{\sin \frac{\theta}{2}}
\end{aligned}
$$

$$
=\frac{2 \sin \frac{k \theta}{2} \cdot \sin \left(\frac{k+1}{2}\right) \theta+2 \sin (k+1) \theta \cdot \sin \frac{\theta}{2}}{2 \sin \frac{\theta}{2}}
$$

$$
\cos \left(\frac{k \theta}{2}-\frac{k+1}{2} \theta\right)-\cos \left(\frac{k \theta}{2}+\frac{k+1}{2} \theta\right)+\cos \left[(k+1) \theta-\frac{\theta}{2}\right]
$$

$$
-\cos \left[(k+1) \theta+\frac{\theta}{2}\right]
$$

$$
=\frac{2 \sin \frac{\theta}{2}}{}
$$

$$
=\frac{\cos \left(-\frac{\theta}{2}\right)-\cos \left(k \theta+\frac{\theta}{2}\right)+\cos \left(k \theta+\frac{\theta}{2}\right)-\cos \left(k \theta+\frac{3 \theta}{2}\right)}{2 \sin \frac{\theta}{2}}
$$

$$
=\frac{\cos \left(\frac{\theta}{2}\right)-\cos \left(k \theta+\frac{3 \theta}{2}\right)}{2 \sin \frac{\theta}{2}}
$$

$$
=\frac{-2 \sin \left(\frac{\frac{\theta}{2}+k \theta+\frac{3 \theta}{2}}{2}\right) \cdot \sin \left(\frac{\frac{\theta}{2}-k \theta-\frac{3 \theta}{2}}{2}\right)}{2 \sin \frac{\theta}{2}}
$$

$$
\begin{aligned}
& {\left[\because \cos \mathrm{A}-\cos \mathrm{B}=-2 \sin \frac{(\mathrm{~A}+\mathrm{B})}{2} \sin \frac{(\mathrm{~A}-\mathrm{B})}{2}\right] } \\
&= \frac{-2 \sin \left(\frac{k \theta+2 \theta}{2}\right) \cdot \sin \left(\frac{-k \theta-\theta}{2}\right)}{2 \sin \frac{\theta}{2}} \\
&= \frac{\sin \left(\frac{k \theta+2 \theta}{2}\right) \cdot \sin \left(\frac{k \theta+\theta}{2}\right)}{\sin \frac{\theta}{2}} \\
&= \frac{\sin \left[\frac{(k+1)+1}{2}\right] \theta \cdot \sin \left[\frac{k+1}{2}\right] \theta}{\sin \frac{\theta}{2}} \text { which is true for } \mathrm{P}(k+1) .
\end{aligned}
$$

Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q23. Show that: $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in \mathrm{~N}$.
Sol. Let $\mathrm{P}(n): \frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}, \forall n \in \mathrm{~N}$.
Step 1: $\mathrm{P}(1): \frac{1^{5}}{5}+\frac{1^{3}}{3}+\frac{7.1}{15}=\frac{3+5+7}{15}=\frac{15}{15}=1 \in \mathrm{~N}$
Which is true for $\mathrm{P}(1)$.
Step 2: $\mathrm{P}(k): \frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 . k}{15}$. Let it be true for $\mathrm{P}(k)$ and let $\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}=\lambda$.
Step 3: $\quad P(k+1)=\frac{(k+1)^{5}}{5}+\frac{(k+1)^{3}}{3}+\frac{7(k+1)}{15}$
$=\frac{1}{5}\left[k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1\right]+\frac{1}{3}\left[k^{3}+3 k^{2}+3 k+1\right]$ $+\frac{7}{15} k+\frac{7}{15}$
$=\left(\frac{k^{5}}{5}+\frac{k^{3}}{3}+\frac{7 k}{15}\right)+\left(k^{4}+2 k^{3}+3 k^{2}+2 k\right)+\frac{1}{5}+\frac{1}{3}+\frac{7}{15}$
$=\lambda+k^{4}+2 k^{3}+3 k^{2}+2 k+1$
[from Step 2]
$=$ positive integers $=$ natural number
Which is true for $\mathrm{P}(k+1)$.
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.

Q24. Prove that: $\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}$ for all natural numbers, $n>1$.
Sol. Let $\mathrm{P}(n): \frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2 n}>\frac{13}{24}, \forall n \in \mathrm{~N}$
Step 1: $\mathrm{P}(2): \frac{1}{2+1}+\frac{1}{2+2}>\frac{13}{24} \Rightarrow \frac{1}{3}+\frac{1}{4}>\frac{13}{24}$ $\Rightarrow \frac{7}{12}>\frac{13}{24} \Rightarrow \frac{14}{24}>\frac{13}{24}$ which is true for $P(2)$.
Step 2: $\mathrm{P}(k): \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}>\frac{13}{24}$. Let it be true for $\mathrm{P}(k)$.
Step 3: $\mathrm{P}(k+1): \frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24}$
Since $\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}>\frac{13}{24}$
So $\frac{1}{k+1}+\frac{1}{k+2}+\ldots+\frac{1}{2 k}+\frac{1}{2(k+1)}>\frac{13}{24}$
Which is true for $\mathrm{P}(k+1)$.
Hence, $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.
Q25. Prove that number of subsets of a set containing n distinct elements is 2^{n}, for all $n \in \mathrm{~N}$.
Sol. Let $\mathrm{P}(n)$: Number of subsets of a set containing n distinct elements is $2^{n}, \forall n \in \mathrm{~N}$
Step 1: It is clear that $\mathrm{P}(1)$ is true for $n=1$. Number of subsets $=2^{1}=2$. Which is true.
Step 2: $\mathrm{P}(k)$ is assumed to be true for $n=k$. Since the number of subsets $=2^{k}$.
Step 3: $\mathrm{P}(k+1)=2^{k+1}$
We know that if one number (i.e., element) is added to the elements of a given set, the number of subsets become double.
\therefore Number of subsets of set having $(k+1)$ distinct elements $=$ $2 \times 2^{k}=2^{k+1}$ which is true for $\mathrm{P}(k+1)$. Hence $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer out of the given four options in each of the Exercises from 26 to 28 (M.C.Q.)

Q26. If $10^{n}+3.4^{n+2}+k$ is divisible by 9 for all $n \in \mathrm{~N}$, then the least positive integral value of k is
(a) 5
(b) 3
(c) 7
(d) 1

Sol. Let $\mathrm{P}(n)=10^{n}+3.4^{n+2}+k$ is divisible by $9, \forall n \in \mathrm{~N}$

$$
\begin{aligned}
\mathrm{P}(1) & =10^{1}+3 \cdot 4^{1+2}+k=10+3.64+k \\
& =10+192+k=202+k \text { must be divisible by } 9 .
\end{aligned}
$$

If $(202+k)$ is divisible by 9 then k must be equal to 5
$202+5=207$ which is divisible by 9

$$
=\frac{207}{9}=23
$$

So, the least positive integral value of $k=5$.
Hence, the correct option is (a).
Q27. For all $n \in \mathrm{~N}, 3.5^{2 n+1}+2^{3 n+1}$
(a) 19
(b) 17
(c) 23
(d) 25

Sol. Let $\mathrm{P}(n): 3.5^{2 n+1}+2^{3 n+1}$
For $P(1): 3.5^{2.1+1}+2^{3.1+1}=3.5^{3}+2^{4}=3(125)+16=375+16$

$$
=391=23 \times 17
$$

So it is divisible by 17 and 23 both.
Hence, the correct option is (b) and (c).
Q28. If $x^{n}-1$ is divisible by $x-k$, then the least positive integral value of k is
(a) 1
(b) 2
(c) 3
(d) 4

Sol. Let $\mathrm{P}(n)=x^{n}-1$ is divisible by $x-k$.
$\mathrm{P}(1)=x-1$ is divisible by $x-k$.
Since $k=1$ is the possible least integral value of k.
Hence, the correct option is (a).

Fill in the Blanks in the Exercises 29.

Q29. If $\mathrm{P}(n): 2 n<n!, n \in \mathrm{~N}$, then $\mathrm{P}(n)$ is true for $n \geq$
Sol. Given that $\mathrm{P}(n): 2 n<n!, \forall n \in \mathrm{~N}$
For $n=1 \quad 2<1$
For $n=2 \quad 2 \times 2<2!\Rightarrow 4<2$
For $n=3 \quad 2 \times 3<3!\Rightarrow 6<3.2 .1 \Rightarrow 6<6$ (Not true)

For $n=4 \quad 2 \times 4<4!\Rightarrow 8<4.3 .2 .1 \Rightarrow 8<24$
(Not true)
For $n=5 \quad 2 \times 5<5!\Rightarrow 10<5.4 .3 .2 .1 \Rightarrow 10<120 \quad$ (True)
So, $\mathrm{P}(n)$ is the true for $n \geq 4$.
Hence, the value of the filler is 4 .

State True or False for the Statements in the Exercises 30.

Q30. Let $\mathrm{P}(n)$ be a statement and let $\mathrm{P}(k) \Rightarrow \mathrm{P}(k+1)$, for some natural number k, then $\mathrm{P}(n)$ is true for all $n \in \mathrm{~N}$.
Sol. Given that: $\mathrm{P}(k) \Rightarrow \mathrm{P}(k+1)$

$$
\mathrm{P}(1) \Rightarrow \mathrm{P}(2) \text { which is not true. }
$$

Hence, the statement is 'False'.

