EXERCISE

SHORT ANSWER TYPE QUESTIONS

- **Q1.** Give an example of a statement P(n) which is true for all $n \ge 4$ but P(1), P(2) and P(3) are not true. Justify your answer.
- **Sol.** The required statement is P(n) = 2n < n!

Justification:
$$P(n) : 2n < n!$$

$$P(1): 2.1 < 1! \implies 2 < 1 \text{ not true}$$

$$P(2): 2.2 < 2! \implies 4 < 2.1 \implies 4 < 2$$
 not true

$$P(3): 2.3 < 3! \implies 6 < 3.2.1 \implies 6 < 6 \text{ not true}$$

$$P(4): 2.4 < 4! \implies 8 < 4.3.2.1 \implies 8 < 24 \text{ True}$$

$$P(5): 2.5 < 5! \implies 10 < 5.4.3.2.1 \implies 10 < 120$$
 True Hence, $P(n) = 2n < n!$ is not true for $P(1)$, $P(2)$ and $P(3)$ but it is

- true for all values of $n \ge 4$. **Q2.** Give an example of a statement P(n) which is true for all n. Justify your answer.
- Sol. The required statement is

$$P(n): 1+2+3+...+n = \frac{n(n+1)}{2}$$
Justification: P(1):
$$1 = \frac{1(1+1)}{2}$$

$$P(k): 1+2+3+...+k = \frac{k(k+1)}{2}$$
. Let it be true.
$$P(k+1): 1+2+3+...+k + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{(k+1)(k+2)}{2}$$

Hence, P(k + 1) is true whenever P(k) is true.

Prove each of the statements in Exercise 3 to 6 by the principle of Mathematical Induction.

Q3. $4^n - 1$ is divisible by 3, for each natural number n.

Sol. Let
$$P(n) : 4^n - 1$$

Step 1:
$$P(1) = 4 - 1 = 3$$
 which is divisible by 3, so it is true.

Step 2:
$$P(2) = 4^k - 1 = 3\lambda$$
. Let it be true.

Step 3:
$$P(k+1) = 4^{k+1} - 1$$

= $4^k \cdot 4 - 1 = 4 \cdot 4^k - 4 + 3 = 4(4^k - 1) + 3$
= $4(3\lambda) + 3$ (from Step 2)
= $3[4\lambda + 1]$ which is true as it is divisible by 3.

Hence, P(k + 1) is true whenever P(k) is true.

Q4. $2^{3n} - 1$ is divisible by 7, for all natural numbers n.

Sol. Let $P(n): 2^{3n} - 1$

Step 1: $P(1) = 2^{3.1} - 1 = 8 - 1 = 7$ which is divisible by 7.

So, P(1) is true.

Step 2: $P(k) = 2^{3k} - 1 = 7\lambda$. Let it be true.

Step 3:
$$P(k+1) = 2^{3(k+1)} - 1$$

 $= 2^{3k+3} - 1 = 2^3 \cdot 2^{3k} - 8 + 7 = 8 \cdot 2^{3k} - 8 + 7$
 $= 8(2^{3k} - 1) + 7$ (from Step 2)
 $= 8.7\lambda + 7$
 $= 7(8\lambda + 1)$ which is true as it is divisible by 7

Hence, P(k + 1) is true whenever P(k) is true.

Q5. $n^3 - 7n + 3$ is divisible by 3, for all natural numbers n.

Sol. Let $P(n) : n^3 - 7n + 3$

Step 1:
$$P(1) = (1)^3 - 7(1) + 3$$

= 1 - 7 + 3 = -3 which is divisible by 3.

So, it is true for P(1).

Step 2: P(k) : $k^3 - 7k + 3 = 3\lambda$. Let it be true.

$$\Rightarrow k^3 = 3\lambda + 7k - 3$$
Step 3:
$$P(k+1) = (k+1)^3 - 7(k+1) + 3$$

$$= k^3 + 1 + 3k^2 + 3k - 7k - 7 + 3$$

$$= k^3 + 3k^2 - 4k - 3$$

$$= (3\lambda + 7k - 3) + 3k^2 - 4k - 3 \quad \text{(from Step 2)}$$

$$= 3k^2 + 3k + 3\lambda - 6$$

$$= 3(k^2 + k + \lambda - 2) \text{ which is divisible by 3.}$$

So it is true for P(k + 1).

Hence, P(k + 1) is true whenever it is true for P(k).

Q6. $3^{2n} - 1$ is divisible by 8, for all natural numbers n.

Sol. Let $P(n): 3^{2n} - 1$

Step 1: $P(1): 3^2 - 1 = 9 - 1 = 8$ which is divisible by 8.

So, it is true for P(1).

Step 2: $P(k) = 3^{2k} - 1 = 8\lambda$. Let it be true.

Step 3:
$$P(k+1) = 3^{2(k+1)} - 1$$

= $3^{2k+2} - 1 = 3^2 \cdot 3^{2k} - 9 + 8 = 9(3^{2k} - 1) + 8$
= $9.8\lambda + 8$ (from Step 2)
= $8[9\lambda + 1]$ which is divisible by 8.

So it is true for P(k + 1).

Hence, P(k + 1) is true whenever it is true for P(k).

Q7. For any natural number n, $7^n - 2^n$ is divisible by 5.

Sol. Let $P(n) : 7^n - 2^n$

Step 1: $P(1): 7^1 - 2^1 = 5$ which is divisible by 5.

So it is true for P(1).

Step 2: $P(k): 7^k - 2^k = 5\lambda$. Let it be true for P(k).

Step 2:
$$P(k)$$
: $7 - 2 = 5\lambda$. Let it be true for $P(k)$.
Step 3: $P(k+1) = 7^{k+1} - 2^{k+1}$
 $= 7^{k+1} + 7^k \cdot 2 - 7^k \cdot 2 - 2^{k+1}$
 $= (7^{k+1} - 7^k \cdot 2) + 7^k \cdot 2 - 2^{k+1}$
 $= 7^k (7 - 2) + 2 \cdot (7^k - 2^k)$
 $= 5 \cdot 7^k + 2 \cdot 5\lambda$ (from Step 2)
 $= 5(7^k + 2\lambda)$ which is divisible by 5.

So, it is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

Q8. For any natural number n, $x^n - y^n$ is divisible by x - y, where xand y are any integers with $x \neq y$.

Sol. Let $P(n): x^n - y^n$

Step 1: $P(1): x^1 - y^1 = x - y$ which is divisible by x - y.

So P(1) is true.

Step 2:
$$P(k)$$
: $x^k - y^k = (x - y)\lambda$. Let it be true.
Step 3: $P(k+1) = x^{k+1} - y^{k+1} = x^{k+1} - x^k y - x^k y - y^{k+1}$
 $= (x^{k+1} - x^k y) + (x^k y - y^{k+1})$
 $= x^k (x - y) + y(x^k - y^k)$
 $= x^k (x - y) + y.(x - y)\lambda$ (from Step 2)
 $= (x - y)(x^k + y\lambda)$ which is divisible by $(x - y)$.

So, it is true for P(k + 1).

Q9. $n^3 - n$ is divisible by 6, for each natural number $n \ge 2$.

Sol. Let $P(n): n^3 - n$

Step 1: $P(2): 2^3 - 2 = 6$ which is divisible by 6. So it is true for P(2).

Step 2: P(k): $k^3 - k = 6\lambda$. Let it be true for $k \ge 2$

$$\Rightarrow \qquad k^3 = 6\lambda + k \qquad \dots(i)$$

Step 3:
$$P(k+1) = (k+1)^3 - (k+1)$$

= $k^3 + 1 + 3k^2 + 3k - k - 1$
= $k^3 - k + 3(k^2 + k)$
= $6\lambda + 3(k^2 + k)$ [from (i)]

We know that $3(k^2 + k)$ is divisible by 6 for every value of $k \in \mathbb{N}$. Hence P(k + 1) is true whenever P(k) is true.

Q10. $n(n^2 + 5)$ is divisible by 6, for each natural number n.

Sol. Let $P(n) : n(n^2 + 5)$

Step 1: P(1): 1(1+5) = 6 which is divisible by 6. So it is true for P(1).

Step 2: P(k): $k(k^2 + 5) = 6\lambda$. Let it be true.

NCERT Exemplar - Class 11

$$\Rightarrow k^{3} + 5k = 6\lambda$$

$$\Rightarrow k^{3} = 6\lambda - 5k \qquad ...(i)$$
Step 3:
$$P(k+1) = (k+1)[(k+1)^{2} + 5]$$

$$= (k+1)[k^{2} + 1 + 2k + 5]$$

$$= (k+1)[k^{2} + 2k + 6]$$

$$= k^{3} + 2k^{2} + 6k + k^{2} + 2k + 6$$

$$= k^{3} + 3k^{2} + 8k + 6$$

$$= k^{3} + 5k + 3k^{2} + 3k + 6$$

$$= 6\lambda - 5k + 5k + 3(k^{2} + k + 2) \qquad [From (i)]$$

$$= 6\lambda + 3(k^{2} + k + 2)$$

We know that $k^2 + k + 2$ is divisible by 2 for each value of $k \in \mathbb{N}$, so, let $k^2 + k + 2 = 2m$.

So $P(k+1) = 6\lambda + 3.2m = 6(\lambda + m)$ which is divisible by 6. Hence, P(k+1) is true whenever P(k) is true.

Q11. $n^2 < 2^n$, for all natural numbers $n \ge 5$.

Sol. Let $P(n) : n^2 < 2^n$ for all natural numbers, $n \ge 5$

Step 1: $P(5): 1^5 < 2^5 \implies 1 < 32$ which true for P(5).

Step 2: $P(k): k^2 < 2^k$. Let it be true for $k \in \mathbb{N}$.

Step 3: P(k+1): $(k+1)^2 < 2^{k+1}$

From Step 2, we get

$$k^{2} < 2^{k}$$

$$\Rightarrow k^{2} + 2k + 1 < 2^{k} + 2k + 1$$

$$\Rightarrow (k+1)^{2} < 2^{k} + 2k + 1 \qquad ...(i)$$
Since
$$(2k+1) < 2^{k}$$
So
$$k^{2} + 2k + 1 < 2^{k} + 2^{k}$$

$$\Rightarrow k^{2} + 2k + 1 < 2.2^{k}$$

$$\Rightarrow k^{2} + 2k + 1 < 2^{k+1} \qquad ...(ii)$$

From eqn. (i) and (ii), we get $(k + 1)^2 < 2^{k+1}$.

Hence, P(k+1) is true whenever P(k) is true for $k \in \mathbb{N}$, $n \ge 5$.

Q12. 2n < (n + 2)! for all natural number n. **Sol.** Let P(n) : 2n < (n + 2)! for all $k \in N$.

Step 1: P(1):
$$2.1 < (1+2)!$$

 $\Rightarrow 2 < 3! \Rightarrow 2 < 6 \text{ which is true for P(1)}$
 $(\because 3! = 3 \times 2 \times 1 = 6)$

Step 2: P(k): 2k < (k+2)!. Let it be true for P(k)

Step 3:
$$P(k+1)$$
: $2(k+1) < (k+1+2)!$
Since $2k < (k+2)!$ (from Step 2)
⇒ $2k+2 < (k+2)!+2$
⇒ $2(k+1) < (k+2)!+2$
Also, $(k+2)!+2 < (k+3)!$
∴ $2(k+1) < (k+3)!$

NCERT Exemplar - Class 11

$$\Rightarrow$$
 2($k+1$) < ($k+2+1$)! which is true for P($k+1$) Hence, P($k+1$) is true whenever P(k) is true.

Q13.
$$\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$$
 for all natural numbers $n \ge 2$.

Sol. Let
$$P(n)$$
: $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{n}}, \ \forall \ n \ge 2$

Step 1: P(2):
$$\sqrt{2} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}$$
 which is true.

Step 2:
$$P(k)$$
: $\sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{k}}$. Let it be true.

Step 3:
$$P(k+1): \sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + ... + \frac{1}{\sqrt{k+1}}$$
 From Step 2, we have

$$\sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}$$

$$\Rightarrow \qquad \sqrt{k} + \frac{1}{\sqrt{k+1}} \, < \, \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$$

$$\Rightarrow \frac{\sqrt{k}.\sqrt{k+1}+1}{\sqrt{k+1}} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \dots (i)$$

Now if
$$\sqrt{k+1} < \frac{\sqrt{k} \cdot \sqrt{k+1} + 1}{\sqrt{k+1}}$$

$$\Rightarrow \qquad (k+1) < \sqrt{k} \cdot \sqrt{k+1} + 1$$

$$\Rightarrow \qquad k < \sqrt{k} \cdot \sqrt{k+1} \qquad \dots(ii)$$

From eqn. (i) and (ii) we get

$$\sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}}$$

Hence, P(k + 1) is true whenever P(k) is true.

Q14.
$$2 + 4 + 6 + ... + 2n = n^2 + n$$
, for all natural numbers *n*.

Sol. Let
$$P(n)$$
: $2 + 4 + 6 + ... + 2n = n^2 + n, \forall n \in \mathbb{N}$
Step 1: $P(1)$: $2 = 1^2 + 1 = 2$

which is true for P(1)

Step 2: P(k): $2 + 4 + 6 + ... + 2k = k^2 + k$. Let it be true.

Step 3:
$$P(k+1): 2+4+6+...+2k+2k+2$$

$$= k^{2} + k + 2k + 2 = k^{2} + 3k + 2$$

$$= k^{2} + 2k + k + 1 + 1$$

$$= (k+1)^{2} + (k+1)$$

Which is true for P(k + 1)

So, P(k + 1) is true whenever P(k) is true.

Q15.
$$1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$$
 for all natural numbers *n*.

Sol. Let
$$P(n): 1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1, n \in \mathbb{N}$$
.

$$P(n): 2^{0} + 2^{1} + 2^{2} + ... + 2^{n} = 2^{n+1} - 1$$

Step 1: $P(1) = 2^0 = 2^{0+1} - 1 = 2 - 1 = 1 = 2^0$ which is true.

Step 2: $P(k) = 2^0 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} - 1$. Let it be true.

Step 3:
$$P(k+1) = 2^0 + 2^1 + 2^2 + ... + 2^k + 2^{k+1}$$
.
= $2^{k+1} - 1 + 2^{k+1} = 2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1$

 $= 2^{(k+1)+1} - 1$ which is true for P(k + 1)

Hence, P(k + 1) is true whenever P(k) is true.

Q16.
$$1 + 5 + 9 + ... + (4n - 3) = n(2n - 1)$$
, for all natural numbers n .

Sol. Let
$$P(n): 1+5+9+...+(4n-3)=n(2n-1), \ \forall \ n \in \mathbb{N}$$

Step 1:
$$P(1)$$
: $1 = 1(2.1 - 1) = 1$ which is true for $P(1)$

Step 2:
$$P(k)$$
: $1 + 5 + 9 + ... + (4k - 3) = k(2k - 1)$. Let it be true.

Step 3:
$$P(k+1): 1+5+9+...+(4k-3)+(4k+1)$$

= $k(2k-1)+(4k+1)=2k^2-k+4k+1$
= $2k^2+3k+1=2k^2+2k+k+1$
= $2k(k+1)+1(k+1)=(2k+1)(k+1)$
= $(k+1)(2k+2-1)=(k+1)[2(k+1)-1]$

Which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

Q17. A sequence a_1 , a_2 , a_3 ... is defined by letting $a_1 = 3$ and $a_k = 7a_{k-1}$ for all natural numbers $k \ge 2$. Show that $a_n = 3.7^{n-1}$ for all natural numbers.

$$a_1 = 3$$

 $a_2 = 7a_{2-1} = 7.a_1 = 7.3 = 21$
 $a_3 = 7.a_{3-1} = 7.a_2 = 7.21 = 147$

et
$$P(n) \cdot a =$$

Let $P(n): a_n = 3.7^{n-1}, \ \forall \ n \in \mathbb{N}$ **Step 1:** P(2): $a_2 = 3.7^{2-1} = 21 \Rightarrow 21 = 21$ which is true for P(2).

Step 2: P(*k*): $a_k = 3.7^{k-1}$. Let it be true.

Step 3: $a_k = 7a_{k-1}$ (given) Put

$$a_{k+1} = 7a_k = 7(3.7^{k-1}) = 3.7^{k+1-1} = 3.7^{(k+1)-1}$$

which is true for P(k + 1)

Hence, P(k + 1) is true whenever P(k) is true.

Q18. A sequence b_0 , b_1 , b_2 , ... is defined by letting $b_0 = 5$ and $b_k = 4 + b_{k-1}$ for all natural numbers k. Show that $b_n = 5 + 4n$ for all natural number *n* using Mathematical Induction.

Sol. We have
$$b_0 = 5$$
 and $b_k = 4 + b_{k-1}$
 $\Rightarrow b_0 = 5$, $b_1 = 4 + b_0 = 4 + 5 = 9$ and $b_2 = 4 + b_1 = 4 + 9 = 13$

Let $P(n) : b_n = 5 + 4n$

Step 1: P(1): $b_1 = 5 + 4 = 9 \implies 9 = 9$ which is true.

Step 2: P(k): $b_k = 5 + 4k$. Let it be true $\forall k \in \mathbb{N}$

Step 3: Given that:

$$P(k) = 4 + b_{k-1}$$

$$\Rightarrow P(k+1) = 4 + b_{k+1-1}$$

$$\Rightarrow P(k+1) = 4 + b_k = 4 + 5 + 4k$$

$$\Rightarrow P(k+1) = 5 + 4(k+1) \text{ which is true for } P(k+1)$$

Hence, P(k + 1) is true whenever P(k) is true.

Q19. A sequence d_1 , d_2 , d_3 , ... is defined by letting $d_1 = 2$ and $d_k = \frac{d_{k-1}}{n \in k \mathbb{N}}$ for all natural numbers $k \ge 2$. Show that $d_n = \frac{2}{n!}$ for all $n \in k \mathbb{N}$.

Sol. Given that:
$$d_1 = 2 \text{ and } d_k = \frac{d_{k-1}}{k}$$

Let
$$P(n)$$
:
$$d_n = \frac{2}{n!}$$

Step 1: P(1):
$$d_1 = \frac{2}{1!} = 2$$
 which is true for P(1).

Step 2:
$$P(k)$$
: $d_k = \frac{2}{k!}$. Let it be true for $P(k)$.

Step 3: Given that:
$$d_k = \frac{d_{k-1}}{k}$$

$$d_{k+1} = \frac{d_{k+1-1}}{k+1} = \frac{d_k}{k+1}$$

$$\Rightarrow \qquad d_{k+1} = \frac{1}{k+1}.d_k = \frac{1}{k+1}.\frac{2}{k!}$$

$$\Rightarrow d_{k+1} = \frac{2}{(k+1)!} \text{ Which is true for } P(k+1)$$

Hence, P(k + 1) is true whenever P(k) is true.

Q20. Prove that for all $n \in \mathbb{N}$.

$$\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + \dots + \cos (\alpha + (n-1)\beta)$$

$$= \frac{\cos\left[\alpha + \left(\frac{n-1}{2}\right)\beta\right] \sin\left[\frac{n\beta}{2}\right]}{\sin\frac{\beta}{2}}$$

Sol. Let P(n): $\cos \alpha + \cos (\alpha + \beta) + \cos (\alpha + 2\beta) + ... + \cos [\alpha + (n-1)\beta]$

$$= \frac{\cos\left[\alpha + \left(\frac{n-1}{2}\right)\beta\right]\left[\sin\frac{n\beta}{2}\right]}{\sin\frac{\beta}{2}}$$

$$\begin{aligned} & \text{Step 1: P(1) :} \cos\alpha = \frac{(\cos\alpha)\left(\sin\frac{\beta}{2}\right)}{\sin\frac{\beta}{2}} = \cos\alpha \\ & \text{which is true for P(1)} \\ & \text{Step 2: P(k) :} \cos\alpha + \cos\left(\alpha + \beta\right) + \cos\left(\alpha + 2\beta\right) + ... + \cos\left[\alpha + (k-1)\beta\right] \\ & = \frac{\cos\left[\alpha + \left(\frac{k-1}{2}\right)\beta\right]\sin\left(\frac{k\beta}{2}\right)}{\sin\frac{\beta}{2}} \text{. Let it be true.} \\ & \frac{\sin\frac{\beta}{2}}{\sin\frac{\beta}{2}} \cdot \text{. Let it be true.} \\ & = \frac{\cos\left[\alpha + \left(\frac{k-1}{2}\right)\beta\right]\sin\left(\frac{k\beta}{2}\right)}{\sin\frac{\beta}{2}} + \cos\left(\alpha + 2\beta\right) + ... + \cos\left[\alpha + (k-1)\beta\right] \\ & + \cos\left[\alpha + (k-1)\beta\right] \\ & + \cos\left[\alpha + (k-1)\beta\right] \\ & = \frac{\sin\left[\alpha + \left(\frac{k-1}{2}\right)\beta\right]\sin\left(\frac{k\beta}{2}\right)}{\sin\frac{\beta}{2}} + \cos\left(\alpha + k\beta\right) \cdot \sin\frac{\beta}{2}} \\ & = \frac{2\cos\left[\alpha + \left(\frac{k-1}{2}\right)\beta\right]\sin\left(\frac{k\beta}{2}\right) + 2\cos\left(\alpha + k\beta\right) \cdot \sin\frac{\beta}{2}}{2\sin\frac{\beta}{2}} \\ & = \frac{2\sin\frac{\beta}{2}}{2\sin\frac{\beta}{2}} \\ & = \frac{2\sin\left[\alpha + k\beta - \frac{\beta}{2}\right] - \sin\left(\alpha - \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}} \\ & = \frac{\sin\left[\alpha + k\beta + \frac{\beta}{2}\right] - \sin\left(\alpha - \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}} \\ & = \frac{2\cos\left(\alpha + \frac{k\beta}{2}\right)\sin(k+1)\frac{\beta}{2}}{2\sin\frac{\beta}{2}} \\ & = \frac{\cos\left(\alpha + \frac{k\beta}{2}\right).\sin(k+1)\frac{\beta}{2}}{\sin\frac{\beta}{2}} \end{aligned}$$

$$= \frac{\cos\left[\alpha + \left(\frac{k+1-1}{2}\right)\beta\right]\sin\left(\frac{k+1}{2}\right)\beta}{\sin\frac{\beta}{2}}$$
 which is true for P(k+1)

Hence, P(k + 1) is true whenever P(k) is true.

Q21. Prove that: $\cos \theta .\cos 2\theta .\cos 2^2\theta ... \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$, for all $n \in \mathbb{N}$.

Sol. Let
$$P(n)$$
: $\cos \theta .\cos 2\theta .\cos 2^2\theta ... \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$, $\forall n \in \mathbb{N}$.

Step 1: P(1):
$$\cos \theta = \frac{\sin 2^1 \theta}{2^1 \sin \theta} = \frac{\sin 2\theta}{2 \sin \theta} = \frac{2 \sin \theta \cos \theta}{2 \sin \theta} = \cos \theta$$

$$\Rightarrow \cos \theta = \cos \theta \text{ which is true for P(1)}$$

Step 2:
$$P(k)$$
: $\cos \theta .\cos 2\theta .\cos 2^2\theta ... \cos 2^{k-1}\theta = \frac{\sin 2^k \theta}{2^k \sin \theta}$
Let it be true for $P(k)$.

Hence, P(k + 1) is true whenever P(k) is true.

Q22. Prove that $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin n\theta$

$$= \frac{\sin \frac{n\theta}{2} \cdot \sin \frac{n+1}{2}\theta}{\sin \frac{\theta}{2}}, \text{ for all } n \in \mathbb{N}.$$

Sol. Let P(n): $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin n\theta$

$$= \frac{\sin\frac{n\theta}{2}.\sin\left(\frac{n+1}{2}\right)\theta}{\sin\frac{\theta}{2}}, n \in \mathbb{N}.$$

Step 1: P(1):
$$\sin \theta = \frac{\sin \frac{\theta}{2} \cdot \sin \left(\frac{1+1}{2}\right)\theta}{\sin \frac{\theta}{2}} = \frac{\sin \frac{\theta}{2} \cdot \sin \theta}{\sin \frac{\theta}{2}} = \sin \theta$$

$$\therefore \qquad \sin \theta = \sin \theta \text{ which is true for } P(1).$$

Step 2:
$$P(k)$$
: $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin k\theta$

$$= \frac{\sin\frac{k\theta}{2}.\sin\left(\frac{k+1}{2}\right)\theta}{\sin\frac{\theta}{2}}.$$
 Let it be true for P(k).

Step 3:
$$P(k + 1)$$
: $\sin \theta + \sin 2\theta + \sin 3\theta + ... + \sin (k + 1)\theta$

$$= \frac{\sin\frac{k\theta}{2}.\sin\left(\frac{k+1}{2}\right)\theta}{\sin\frac{\theta}{2}} + \sin(k+1)\theta$$

$$= \frac{\sin\frac{k\theta}{2}.\sin\left(\frac{k+1}{2}\right)\theta + \sin((k+1)\theta.\sin\frac{\theta}{2})}{\sin\frac{\theta}{2}}$$

$$= \frac{2\sin\frac{k\theta}{2}.\sin\left(\frac{k+1}{2}\right)\theta + 2\sin((k+1)\theta.\sin\frac{\theta}{2})}{2\sin\frac{\theta}{2}}$$

$$\frac{\cos\left(\frac{k\theta}{2} - \frac{k+1}{2}\theta\right) - \cos\left(\frac{k\theta}{2} + \frac{k+1}{2}\theta\right) + \cos\left[(k+1)\theta - \frac{\theta}{2}\right]}{-\cos\left[(k+1)\theta + \frac{\theta}{2}\right]}$$

$$\frac{2\sin\frac{\theta}{2}}{}$$

$$2\sin\frac{\theta}{2}$$

$$= \frac{\cos\left(-\frac{\theta}{2}\right) - \cos\left(k\theta + \frac{\theta}{2}\right) + \cos\left(k\theta + \frac{\theta}{2}\right) - \cos\left(k\theta + \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$= \frac{\cos\left(\frac{\theta}{2}\right) - \cos\left(k\theta + \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$= \frac{-2\sin\left(\frac{\theta}{2} + k\theta + \frac{3\theta}{2}\right).\sin\left(\frac{\theta}{2} - k\theta - \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$\left[\because \cos A - \cos B = -2\sin\frac{(A+B)}{2}\sin\frac{(A-B)}{2}\right]$$

$$= \frac{-2\sin\left(\frac{k\theta + 2\theta}{2}\right).\sin\left(\frac{-k\theta - \theta}{2}\right)}{2\sin\frac{\theta}{2}}$$

$$= \frac{\sin\left(\frac{k\theta + 2\theta}{2}\right).\sin\left(\frac{k\theta + \theta}{2}\right)}{\sin\frac{\theta}{2}}$$

$$= \frac{\sin\left[\frac{(k+1)+1}{2}\right]\theta.\sin\left[\frac{k+1}{2}\right]\theta}{\sin\frac{\theta}{2}} \text{ which is true for } P(k+1).$$

Hence, P(k + 1) is true whenever P(k) is true.

Q23. Show that: $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is a natural number for all $n \in \mathbb{N}$.

Sol. Let
$$P(n)$$
: $\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$, $\forall n \in \mathbb{N}$.
Step 1: $P(1)$: $\frac{1^5}{5} + \frac{1^3}{3} + \frac{7 \cdot 1}{15} = \frac{3 + 5 + 7}{15} = \frac{15}{15} = 1 \in \mathbb{N}$

Which is true for P(1).

Step 2:
$$P(k)$$
: $\frac{k^5}{5} + \frac{k^3}{3} + \frac{7 \cdot k}{15}$. Let it be true for $P(k)$ and let $\frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15} = \lambda$.

Step 3:
$$P(k+1) = \frac{(k+1)^5}{5} + \frac{(k+1)^3}{3} + \frac{7(k+1)}{15}$$
$$= \frac{1}{5} \left[k^5 + 5k^4 + 10k^3 + 10k^2 + 5k + 1 \right] + \frac{1}{3} \left[k^3 + 3k^2 + 3k + 1 \right]$$
$$+ \frac{7}{15}k + \frac{7}{15}$$

$$= \left(\frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15}\right) + \left(k^4 + 2k^3 + 3k^2 + 2k\right) + \frac{1}{5} + \frac{1}{3} + \frac{7}{15}$$

$$= \lambda + k^4 + 2k^3 + 3k^2 + 2k + 1$$
 [from Step 2]

= positive integers = natural number

Which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

Q24. Prove that:
$$\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} > \frac{13}{24}$$
 for all natural numbers, $n > 1$.

Sol. Let
$$P(n)$$
: $\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} > \frac{13}{24}$, $\forall n \in \mathbb{N}$
Step 1: $P(2)$: $\frac{1}{2+1} + \frac{1}{2+2} > \frac{13}{24} \Rightarrow \frac{1}{3} + \frac{1}{4} > \frac{13}{24}$
 $\Rightarrow \frac{7}{12} > \frac{13}{24} \Rightarrow \frac{14}{24} > \frac{13}{24}$ which is true for $P(2)$.
Step 2: $P(k)$: $\frac{1}{k+1} + \frac{1}{k+2} + ... + \frac{1}{2k} > \frac{13}{24}$. Let it be true for $P(k)$.
Step 3: $P(k+1)$: $\frac{1}{k+1} + \frac{1}{k+2} + ... + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24}$
Since $\frac{1}{k+1} + \frac{1}{k+2} + ... + \frac{1}{2k} > \frac{13}{24}$

So $\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24}$

Which is true for P(k + 1).

Hence, P(k + 1) is true whenever P(k) is true.

- **Q25.** Prove that number of subsets of a set containing n distinct elements is 2^n , for all $n \in \mathbb{N}$.
 - **Sol.** Let P(n): Number of subsets of a set containing n distinct elements is 2^n , $\forall n \in \mathbb{N}$

Step 1: It is clear that P(1) is true for n = 1. Number of subsets $= 2^1 = 2$. Which is true.

Step 2: P(k) is assumed to be true for n = k. Since the number of subsets = 2^k .

Step 3: $P(k + 1) = 2^{k+1}$

We know that if one number (*i.e.*, element) is added to the elements of a given set, the number of subsets become double. \therefore Number of subsets of set having (k + 1) distinct elements = $2 \times 2^k = 2^{k+1}$ which is true for P(k + 1). Hence P(k + 1) is true whenever P(k) is true.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer out of the given four options in each of the Exercises from 26 to 28 (M.C.Q.)

- **Q26.** If $10^n + 3 \cdot 4^{n+2} + k$ is divisible by 9 for all $n \in \mathbb{N}$, then the least positive integral value of k is
 - (a) 5
- (*b*) 3
- (c) 7
- (d) 1

(d) 4

Sol. Let
$$P(n) = 10^n + 3.4^{n+2} + k$$
 is divisible by 9, $\forall n \in \mathbb{N}$ $P(1) = 10^1 + 3.4^{1+2} + k = 10 + 3.64 + k$ $= 10 + 192 + k = 202 + k$ must be divisible by 9.

If (202 + k) is divisible by 9 then k must be equal to 5

202 + 5 = 207 which is divisible by 9
=
$$\frac{207}{9}$$
 = 23

So, the least positive integral value of k = 5.

Hence, the correct option is (a).

Q27. For all
$$n \in \mathbb{N}$$
, $3.5^{2n+1} + 2^{3n+1}$

Sol. Let
$$P(n)$$
: $3.5^{2n+1} + 2^{3n+1}$

For
$$P(1): 3.5^{2.1+1} + 2^{3.1+1} = 3.5^3 + 2^4 = 3(125) + 16 = 375 + 16$$

= $391 = 23 \times 17$

So it is divisible by 17 and 23 both.

Hence, the correct option is (*b*) and (*c*).

Q28. If $x^n - 1$ is divisible by x - k, then the least positive integral value of *k* is

(c) 3

Sol. Let
$$P(n) = x^n - 1$$
 is divisible by $x - k$.

$$P(1) = x - 1$$
 is divisible by $x - k$.

Since k = 1 is the possible least integral value of k.

Hence, the correct option is (*a*).

Fill in the Blanks in the Exercises 29.

Q29. If $P(n) : 2n < n!, n \in \mathbb{N}$, then P(n) is true for $n \ge \dots$

Sol. Given that
$$P(n) : 2n < n!, \forall n \in \mathbb{N}$$

For
$$n = 1$$
 2 < 1 (Not true)

For
$$n = 2$$
 $2 \times 2 < 2! \Rightarrow 4 < 2$ (Not true)

For
$$n = 3$$
 $2 \times 3 < 3! \Rightarrow 6 < 3.2.1 \Rightarrow 6 < 6$ (Not true)
For $n = 4$ $2 \times 4 < 4! \Rightarrow 8 < 4.3.2.1 \Rightarrow 8 < 24$ (True)

For
$$n = 4$$
 $2 \times 4 < 4! \Rightarrow 8 < 4.3.2.1 \Rightarrow 8 < 24$ (True)

For
$$n = 5$$
 $2 \times 5 < 5! \Rightarrow 10 < 5.4.3.2.1 \Rightarrow 10 < 120$ (True)

So, P(n) is the true for $n \ge 4$.

Hence, the value of the filler is 4.

State True or False for the Statements in the Exercises 30.

- **Q30.** Let P(n) be a statement and let $P(k) \Rightarrow P(k+1)$, for some natural number k, then P(n) is true for all $n \in \mathbb{N}$.
- **Sol.** Given that: $P(k) \Rightarrow P(k+1)$

$$P(1) \Rightarrow P(2)$$
 which is not true.

Hence, the statement is 'False'.