EXERCISE

SHORT ANSWER TYPE QUESTIONS

- **Q1.** Find the equation of the straight line which passes through the point (1, -2) and cuts off equal intercepts from axes.
- Sol. Intercept form of straight line

 $\frac{x}{a} + \frac{y}{b} = 1$, where *a* and *b* are the intercepts on the axis

Given that a = b

...

$$\frac{x}{a} + \frac{y}{a} = 1 \qquad \dots (i)$$

If eq. (*i*) passes through the point (1, -2), we get

$$\frac{1}{a} - \frac{2}{a} = 1 \implies -\frac{1}{a} = 1 \implies a = -1$$

So, equation of the straight line is

$$\frac{x}{-1} + \frac{y}{-1} = 1 \implies x + y = -1 \implies x + y + 1 = 0$$

Hence, the required equation is x + y + 1 = 0.

- **Q2.** Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, -1).
- **Sol.** Slope of the line joining the points (2, 3) and (3, -1) is

$$\frac{-1-3}{3-2} = -4$$

Slope of the required line which is perpendicular to it

$$= \frac{-1}{-4} = \frac{1}{4} \qquad [\because m_1 m_2 = -1]$$

Equation of the line passing through the point (5, 2) is

$$y-2 = \frac{1}{4}(x-5) \qquad [y-y_1 = m(x-x_1)]$$

$$\Rightarrow \qquad 4y-8 = x-5$$

$$\Rightarrow \qquad x-4y+3 = 0$$

Hence, the required equation is x - 4y + 3 = 0.

- **Q3.** Find the angle between the lines $y = (2 \sqrt{3})(x+5)$ and $y = (2 + \sqrt{3})(x-7)$.
- **Sol.** The given equations are $y = (2 \sqrt{3})(x + 5)$...(*i*)

and
$$y = (2 + \sqrt{3})(x - 7)$$
 ...(*ii*)

Slope of eq. (*i*) m_1 (say) = $(2 - \sqrt{3})$ and slope of eq. (*ii*) m_2 (say) = $(2 + \sqrt{3})$ Let θ be the angle between the two given lines

$$\therefore \quad \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{2 - \sqrt{3} - 2 - \sqrt{3}}{1 + (2 - \sqrt{3})(2 + \sqrt{3})} \right|$$
$$= \left| \frac{-2\sqrt{3}}{1 + 4 - 3} \right| = \left| \frac{-2\sqrt{3}}{2} \right| = \left| -\sqrt{3} \right|$$
$$\Rightarrow \quad \tan \theta = \sqrt{3} \text{ or } -\sqrt{3}$$
$$\therefore \quad \theta = 60^\circ \text{ or } 120^\circ$$

Hence, the required angle is 60° or 120°.

- **Q4.** Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
- **Sol.** Equation of line having *a* and *b* intercepts on the axis is

$$\frac{x}{a} + \frac{y}{b} = 1 \qquad \dots(i)$$

Given that
$$a + b = 14 \implies b = 14 - a$$
$$\implies \qquad \frac{x}{a} + \frac{y}{14 - a} = 1 \qquad \dots(ii)$$

If eq. (ii) passes through the point (3, 4) then
$$\frac{3}{a} + \frac{4}{14 - a} = 1$$
$$\implies \qquad \frac{3(14 - a) + 4a}{a(14 - a)} = 1$$
$$\implies \qquad 42 + a = 14a - a^{2}$$
$$\implies \qquad 42 + a = 14a - a^{2}$$
$$\implies \qquad a^{2} + a - 14a + 42 = 0$$
$$\implies \qquad a^{2} - 13a + 42 = 0$$
$$\implies \qquad a^{2} - 7a - 6a + 42 = 0$$
$$\implies \qquad a(a - 7) - 6(a - 7) = 0$$
$$\implies \qquad a = 6, 7$$
$$\therefore \qquad b = 14 - 6 = 8, b = 14 - 7 = 7$$

Hence, the required equation of lines are

$$\frac{x}{6} + \frac{y}{8} = 1 \implies 4x + 3y = 24$$
$$\frac{x}{7} + \frac{y}{7} = 1 \implies x + y = 7$$

and

- **Q5.** Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
- **Sol.** Let (x_1, y_1) be any point lying in the equation x + y = 4 $x_1 + y_1 = 4$...(i) ... Distance of the point (x_1, y_1) from the equation 4x + 3y = 10 $\frac{4x_1 + 3y_1 - 10}{\sqrt{(4)^2 + (3)^2}} = 1$ $\left|\frac{4x_1 + 3y_1 - 10}{5}\right| = 1$ $4x_1 + 3y_1 - 10 = \pm 5$ $4x_1 + 3y_1 - 10 = 5$ Taking (+) sign $4x_1 + 3y_1 = 15$ \Rightarrow ...(*ii*) From eq. (i) we get $y_1 = 4 - x_1$ Putting the value of y_1 in eq. (*ii*) we get $4x_1 + 3(4 - x_1) = 15$ $4x_1 + 12 - 3x_1 = 15$ \Rightarrow $x_1 + 12 = 15$ \Rightarrow $x_1 = 3$ and $y_1 = 4 - 3 = 1$ \Rightarrow So, the required point is (3, 1)Now taking (-) sign, we have $4x_1 + 3y_1 - 10 = -5$ $4x_1 + 3y_1 = 5$ \Rightarrow ...(iii) From eq. (*i*) we get $y_1 = 4 - x_1$ $4x_1 + 3(4 - x_1) = 5$ \Rightarrow $4x_1 + 12 - 3x_1 = 5$ \Rightarrow $x_1 = 5 - 12 = -7$ \Rightarrow $y_1 = 4 - (-7) = 11$ and So, the required point is (-7, 11)Hence, the required points on the given line are (3, 1) and (-7, 11).
- **Q6.** Show that the tangent of an angle between the lines $\frac{x}{a} + \frac{y}{b} = 1$ and $\frac{x}{a} - \frac{y}{b} = 1$ is $\frac{2ab}{a^2 - b^2}$.

Sol. Given that: $\frac{x}{a} + \frac{y}{b} = 1$...(*i*) and $\frac{x}{a} - \frac{y}{b} = 1$...(*ii*)

Slope of eq. (i)
$$m_1$$
 (say) = $-\frac{b}{a}$

and slope of eq. (*ii*) m_2 (say) = $\frac{b}{a}$ Let θ be the angle between the equation (*i*) and (*ii*)

$$\therefore \quad \tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{-\frac{b}{a} - \frac{b}{a}}{1 + \left(-\frac{b}{a}\right) \left(\frac{b}{a}\right)} \right|$$

$$\Rightarrow \tan \theta = \left| \frac{-\frac{2b}{a}}{1 - \frac{b^2}{a^2}} \right| = \left| \frac{-2ab}{a^2 - b^2} \right|$$
$$\Rightarrow \tan \theta = \frac{2ab}{a^2 - b^2}, \text{ Hence prov}$$

$$\Rightarrow \quad \tan \theta = \frac{2ub}{a^2 - b^2}. \text{ Hence proved.}$$

- **Q7.** Find the equation of lines passing through (1, 2) and making angle 30° with *y*-axis.
- **Sol.** Given that the line makes angle 30° with *y*-axis

: Angle made by the line with *x*-axis is 60°

Hence, the required equation of line is $y - \sqrt{3}x + \sqrt{3} - 2 = 0$.

Q8. Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.

Sol. Given that: 2x + y = 5 ...(*i*) x + 3y + 8 = 0 ...(*ii*) 3x + 4y = 7 ...(*iii*)

Equation of any line passing through the point of intersection of eq. (i) and eq. (ii) is

$$\Rightarrow (2x + y - 5) + \lambda(x + 3y + 8) = 0 ...(iv) \quad (\lambda = \text{constant})$$

$$\Rightarrow 2x + y - 5 + \lambda x + 3\lambda y + 8\lambda = 0$$

$$\Rightarrow (2 + \lambda)x + (1 + 3\lambda)y - 5 + 8\lambda = 0$$

$$= -(2 + \lambda) \quad [...m = -a]$$

Slope of line
$$m_1$$
 (say) = $\frac{1}{1+3\lambda}$ $\begin{bmatrix} \because m = \frac{1}{b} \end{bmatrix}$

Now slope of line 3x + 4y = 7 is

$$m_2(\text{say}) = -\frac{3}{4}$$

If eq. (*iii*) is parallel to eq. (*iv*) then

$$m_{1} = m_{2}$$

$$\Rightarrow \qquad \frac{-(2+\lambda)}{1+3\lambda} = -\frac{3}{4}$$

$$\Rightarrow \qquad \frac{2+\lambda}{1+3\lambda} = \frac{3}{4} \Rightarrow 8+4\lambda = 3+9\lambda$$

$$\Rightarrow \qquad 9\lambda - 4\lambda = 5 \Rightarrow 5\lambda = 5 \Rightarrow \lambda = 1$$

On putting the value of λ in eq. (*iv*) we get

$$(2x + y - 5) + 1(x + 3y + 8) = 0$$

$$\Rightarrow \qquad 2x + y - 5 + x + 3y + 8 = 0$$

$$\Rightarrow \qquad 3x + 4y + 3 = 0$$

Hence, the required equation is 3x + 4y + 3 = 0.

- **Q9.** For what value of *a* and *b* the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x 3y + 6 = 0 on the axes?
- Sol. The given equation are ax + by + 8 = 0 ...(*i*) and 2x - 3y + 6 = 0 ...(*ii*) From eq. (i) we get

From eq. (i) we get,

ax + by + 8 = 0

$$2x - 3y + 6 = 0 \qquad \dots$$
$$\Rightarrow \qquad ax + by = -8$$
$$\Rightarrow \qquad \frac{a}{2}x + \frac{b}{2}y = 1$$

$$\Rightarrow \frac{x}{-8} + \frac{y}{-8} = 1$$
$$\Rightarrow \frac{x}{-8} + \frac{y}{-8} = 1$$
$$-8 + \frac{-8}{-8} = 1$$

So, the intercepts on the axes are $\frac{-6}{a}$ and $\frac{-6}{b}$

From eq. (*ii*), we get

$$2x - 3y + 6 = 0 \implies 2x - 3y = -6$$

 $\Rightarrow \frac{2x}{-6} - \frac{3y}{-6} = 1$
 $\Rightarrow \frac{x}{-3} + \frac{y}{2} = 1$

So, the intercepts are -3 and 2. According to the question

$$\frac{-8}{a} = +3 \implies a = -\frac{8}{3}$$
$$\frac{-8}{b} = -2 \implies b = +4$$

and

Hence, the required values of *a* and *b* are $\frac{-8}{3}$ and 4.

- **Q10.** If the intercept of a line between the coordinate axes is divided by the point (-5, 4) in the ratio 1 : 2, then find the equation of the line.
- **Sol.** Let *a* and *b* be the intercepts on the given line.
 - : Coordinates of A and B are (a, 0) and (0, b) respectively

$$\therefore -5 = \frac{1 \times 0 + 2 \times a}{1 + 2}$$

$$\Rightarrow 2a = -15$$

$$\Rightarrow a = \frac{-15}{2}$$

$$\therefore A = \left(\frac{-15}{2}, 0\right)$$
and $4 = \frac{1 \times b + 0 \times 2}{1 + 2}$

$$\Rightarrow 4 = \frac{b}{3} \Rightarrow b = 12$$

$$\therefore B = (0, 12)$$
So, the equation of line AB is
$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

$$y - 0 = \left(\frac{12 - 0}{0 + \frac{15}{2}}\right) \left(x + \frac{15}{2}\right)$$
$$\Rightarrow \qquad y = \frac{12 \times 2}{15} \left(x + \frac{15}{2}\right)$$
$$\Rightarrow \qquad y = \frac{8}{5} \left(x + \frac{15}{2}\right)$$
$$\Rightarrow \qquad 5y = 8x + 60$$
$$\Rightarrow \qquad 8x - 5y + 60 = 0$$

Hence, the required equation is 8x - 5y + 60 = 0.

- **Q11.** Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of X-axis.
- Sol. Given that:

OM = 4 units $\angle BAX = 120^{\circ}$ $\angle BAO = 180^{\circ} - 120^{\circ}$ or $\angle MAO = 60^{\circ}$... \angle MOA + \angle MAO = 90° $[:: OM \perp AB]$ $\theta + 60^\circ = 90^\circ$ $\theta = 30^{\circ}$... В So, equation of AB in its normal form $x \cos \theta + y \sin \theta = p$ $\Rightarrow x \cos 30^\circ + y \sin 30^\circ = 4$ $x \times \frac{\sqrt{3}}{2} + y \times \frac{1}{2} = 4$ 120° ٠X $\sqrt{3}x + y = 8$ \Rightarrow

Hence, the required equation is $\sqrt{3}x + y = 8$.

- **Q12.** Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).
- **Sol.** Given that equation of the hypotenuse is 3x + 4y = 4 and opposite vertex is (2, 2)

Slope BC =
$$\frac{-3}{4}$$

Let slope of AC be *m*

$$\tan 45^{\circ} = \frac{m + \frac{3}{4}}{1 + \left(\frac{-3}{4}\right)m}$$

LONG ANSWER TYPE QUESTIONS

 \Rightarrow

- **Q13.** If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, -1), then find the length of the side of the triangle.
- **Sol.** Equation of the base AB of a \triangle ABC is x + y = 2In \triangle ABD,

$$\sin 60^{\circ} = \frac{AD}{AB}$$
$$\frac{\sqrt{3}}{2} = \frac{AD}{AB} \implies AD = \frac{\sqrt{3}}{2}AB$$

Hence, the required length of side = $\sqrt{\frac{2}{3}}$.

- **Q14.** A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.
- **Sol.** Let (x_1, y_1) be the coordinates of the given point P and *m* be the slope of the line.

:. Equation of the line is $y - y_1 = m(x - x_1)$...(*i*)

Given points are A(2, 0), B(0, 2) and C(1, 1).

Perpendicular distance from A(2, 0) to the line (*i*) d_1 (say)

$$d_1 = \frac{0 - y_1 - m(2 - x_1)}{\sqrt{1 + m^2}}$$

Perpendicular distance from B(0, 2) d_2 (say)

$$d_2 = \frac{2 - y_1 - m(0 - x_1)}{\sqrt{1 + m^2}}$$

Similarly, perpendicular distance from C(1, 1) d_3 (say)

$$d_3 = \frac{1 - y_1 - m(1 - x_1)}{\sqrt{1 + m^2}}$$

According to the question, we have $d_1 + d_2 + d_3 = 0$

$$\therefore \frac{0 - y_1 - m(2 - x_1)}{\sqrt{1 + m^2}} + \frac{2 - y_1 - m(0 - x_1)}{\sqrt{1 + m^2}} + \frac{1 - y_1 - m(1 - x_1)}{\sqrt{1 + m^2}} = 0$$

Sol.

NCERT Exemplar - Class 11

$$\Rightarrow -y_1 - 2m + mx_1 + 2 - y_1 + mx_1 + 1 - y_1 - m + mx_1 = 0$$

$$\Rightarrow 3mx_1 - 3y_1 - 3m + 3 = 0$$

$$\Rightarrow mx_1 - y_1 - m + 1 = 0$$

Since the point (1, 1) satisfies the above equation.

Hence, the point (1, 1) lies on the line.

Q15. In what direction should a line be drawn through the point (1, 2), so that its point of intersection with the line x + y = 4 is

at a distance $\frac{\sqrt{6}}{3}$ from the given point.

B(a, b).

Slope of line 'l' is given by $m = \frac{b-2}{a-1} = \tan \theta$...(i)

Given that AB = $\frac{\sqrt{6}}{3}$

...

So, by distance formula for point A(1, 2) and B(a, b), we get

$$\sqrt{(a-1)^2 + (b-2)^2} = \frac{\sqrt{6}}{3}$$

On squaring both the side

$$a^{2} + 1 - 2a + b^{2} + 4 - 4b = \frac{6}{9}$$
$$a^{2} + b^{2} - 2a - 4b + 5 = \frac{2}{3}$$
...(*ii*)

Point B(a, b) also satisfies the eqn. x + y = 4

$$a + b = 4 \qquad \dots (iii)$$

On solving (*ii*) and (*iii*), we get $a = \frac{3\sqrt{3} + 1}{2\sqrt{3}}$, $b = \frac{5\sqrt{3} - 1}{2\sqrt{3}}$

Putting values of *a* and *b* in eqn. (*i*), we have

$$\tan \theta = \frac{\frac{5\sqrt{3}-1}{2\sqrt{3}}-2}{\frac{3\sqrt{3}+1}{2\sqrt{3}}} = \frac{5\sqrt{3}-1-4\sqrt{3}}{3\sqrt{3}+1-2\sqrt{3}} = \frac{\sqrt{3}-1}{\sqrt{3}+1}$$

 $\therefore \tan \theta = \tan 15^{\circ} \implies \theta = 15^{\circ}$

- **Q16.** A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
- Sol. Intercepts form of a straight line is

$$\frac{x}{a} + \frac{y}{b} = 1$$

where *a* and *b* are the intercepts made by the line on the axes.

Given that: $\frac{1}{a} + \frac{1}{b} = \frac{1}{k} \text{ (say)}$ $\Rightarrow \qquad \frac{k}{a} + \frac{k}{b} = 1$

which shows that the line is passing through the fixed point (k, k).

- **Q17.** Find the equation of the line which passes through the point (-4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5:3 by this point.
- **Sol.** Let AB be a line passing through a point (- 4, 3) and meets x-axis at A(a, 0) and y-axis at B(0, b).

$$\therefore \qquad -4 = \frac{5 \times 0 + 3a}{5 + 3}$$

$$\Rightarrow \qquad -4 = \frac{3a}{8} \qquad \left[\because \quad X = \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} \right]$$

$$\Rightarrow \qquad 3a = -32 \qquad a = \frac{-32}{3} \qquad and \qquad Y = \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}$$
and
$$3 = \frac{5.b + 3.0}{5 + 3}$$

$$\Rightarrow \qquad 3 = \frac{5.b}{8} \Rightarrow 5b = 24$$

 $b = \frac{24}{5}$ \Rightarrow B(0, b) Intercept form of the line is $\frac{x}{\frac{-32}{3}} + \frac{y}{\frac{24}{5}} = 1$ (-4, 3) $\frac{-3x}{32} + \frac{5y}{24} = 1$ - X Ο \Rightarrow (a, 0) $-9x + 20y = 96 \implies 9x - 20y + 96 = 0$ \Rightarrow Hence, the required equation is 9x - 20y + 96 = 0. Q18. Find the equation of the lines through the point of intersection of the lines x - y + 1 = 0 and 2x - 3y + 5 = 0 and whose distance from the point (3, 2) is $\frac{7}{5}$. **Sol.** Given equations are x - y + 1 = 0...(i) 2x - 3y + 5 = 0and ...(*ii*) Solving eq. (i) and eq. (ii) we get 2x - 2y + 2 = 02x - 3y + 5 = 0 $\frac{(-) (+) (-)}{y-3 = 0} \therefore y = 3$ From eq. (*i*) we have $x - 3 + 1 = 0 \implies x = 2$ So, (2, 3) is the point of intersection of eq. (*i*) and eq. (*ii*). Let *m* be the slope of the required line : Equation of the line is y - 3 = m(x - 2)y - 3 = mx - 2m \Rightarrow mx - y + 3 - 2m = 0 \Rightarrow Since, the perpendicular distance from (3, 2) to the line is $\frac{7}{5}$ then $\frac{7}{5} = \left| \frac{m(3) - 2 + 3 - 2m}{\sqrt{m^2 + 1}} \right|$ $\frac{49}{25} = \frac{(3m-2+3-2m)^2}{m^2+1}$

 \Rightarrow

12

 $\frac{49}{25} = \frac{(m+1)^2}{m^2 + 1}$ \Rightarrow $49m^2 + 49 = 25m^2 + 50m + 25$ \Rightarrow $49m^2 - 25m^2 - 50m + 49 - 25 = 0$ \Rightarrow $24m^2 - 50m + 24 = 0$ \rightarrow $12m^2 - 25m + 12 = 0$ \Rightarrow $12m^2 - 16m - 9m + 12 = 0$ \Rightarrow 4m(3m-4) - 3(3m-4) = 0 \Rightarrow (3m-4)(4m-3) = 0 \Rightarrow 3m - 4 = 0 and 4m - 3 = 0 \Rightarrow $m = \frac{4}{2}, \frac{3}{4}$... Equation of the line taking $m = \frac{4}{3}$ is $y-3 = \frac{4}{3}(x-2)$ $3y - 9 = 4x - 8 \implies 4x - 3y + 1 = 0$ \Rightarrow Equation of the line taking $m = \frac{3}{4}$ is $y - 3 = \frac{3}{4}(x - 2)$ $4y - 12 = 3x - 6 \implies 3x - 4y + 6 = 0$ \Rightarrow Hence, the required equations are 4x - 3y + 1 = 0and 3x - 4y + 6 = 0Q19. If the sum of the distance of a moving point in a plane from the axes is 1, then find the locus of the point.

Q20. P₁, P₂ are points on either of the two lines $y - \sqrt{3}|x| = 2$ at a distance of 5 units from their point of intersection. Find the

coordinates of the foot of perpendiculars drawn from $P_{1'}$, P_{2} on the bisector of the angle between the given lines.

Sol. Given lines are
$$y - \sqrt{3}|x| = 2$$

 $\Rightarrow \qquad y - \sqrt{3}x = 2$, if $x \ge 0$...(*i*)
and $y + \sqrt{3}x = 2$, if $x < 0$...(*ii*)
Slope of eq. (*i*) is $\tan \theta = \sqrt{3} \therefore \theta = 60^{\circ}$
Slope of eq. (*ii*) is $\tan \theta = -\sqrt{3} \therefore \theta = 120^{\circ}$
Solving eq. (*i*) and eq. (*ii*) we get
 $y = -\sqrt{3}x = 2$
 $\frac{y + \sqrt{3}x = 2}{2y = 4} \Rightarrow y = 2$
Putting the value of y is eq. (*i*) we get
 $x = 0$
 \therefore Point of intersection of line (*i*) and (*ii*) is Q(0, 2)
 $\therefore QO = 2$
In ΔPEO

Hence, the coordinates of the foot of perpendicular $= \left(0, 2 + \frac{5\sqrt{3}}{2}\right).$

- **Q21.** If *p* is the length of perpendicular from the origin on the line $\frac{x}{a} + \frac{y}{b} = 1$ and a^2 , p^2 , b^2 are in A.P. then show that $a^4 + b^4 = 0$.
- **Sol.** Given equation is $\frac{x}{a} + \frac{y}{b} = 1$ Since, *p* is the length of perpendicular drawn from the origin to the given line

$$\therefore \qquad p = \frac{\left|\frac{0}{a} + \frac{0}{b} - 1\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}}$$

Squaring both sides, we have

$$p^{2} = \frac{1}{\frac{1}{a^{2}} + \frac{1}{b^{2}}}$$

$$\Rightarrow \qquad \frac{1}{a^{2}} + \frac{1}{b^{2}} = \frac{1}{p^{2}} \qquad \dots(i)$$
Since a^{2} , p^{2} , b^{2} are in A.P.

$$\therefore \qquad 2p^{2} = a^{2} + b^{2}$$

$$\Rightarrow \qquad p^{2} = \frac{a^{2} + b^{2}}{2} \qquad \Rightarrow \qquad \frac{1}{p^{2}} = \frac{2}{a^{2} + b^{2}}$$
Putting the value of $\frac{1}{p^{2}}$ is eq. (i) we get,

$$\frac{1}{a^{2}} + \frac{1}{b^{2}} = \frac{2}{a^{2} + b^{2}}$$

$$\Rightarrow \qquad \frac{a^{2} + b^{2}}{a^{2}b^{2}} = \frac{2}{a^{2} + b^{2}}$$

$$\Rightarrow \qquad (a^{2} + b^{2})^{2} = 2a^{2}b^{2}$$

$$\Rightarrow (a + b') = 2ab$$

$$\Rightarrow a^4 + b^4 + 2a^2b^2 = 2a^2b^2$$

$$\Rightarrow a^4 + b^4 = 0. \text{ Hence proved.}$$

OBJECTIVE TYPE QUESTIONS

Q22. A line cutting off intercept – 3 from the *y*-axis and the tangent at angle to the *x*-axis is $\frac{3}{5}$, its equation is (a) 5y - 3x + 15 = 0 (b) 3y - 5x + 15 = 0(c) 5y - 3x - 15 = 0 (d) None of these **Sol.** Since the lines cut off intercepts – 3 on *y*-axis then the line is passing through the point (0, -3). Given that: $\tan \theta = \frac{3}{5} \implies$ Slope of the line $m = \frac{3}{5}$ So, the equation of the line is $y - y_{a} = m(x - x_{a})$

$$\Rightarrow \qquad \qquad y+3 = \frac{3}{5}(x-0)$$

 $\Rightarrow 5y + 15 = 3x$ $\Rightarrow 3x - 5y - 15 = 0 \Rightarrow 5y - 3x + 15 = 0$ Hence, the correct option is (a).

- **Q23.** Slope of a line which cuts off intercepts of equal length on the axis is
- **Sol.** Intercept form of a line is

Q25. The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is (a) y - x + 1 = 0 (b) y - x - 1 = 0(c) y - x + 2 = 0 (d) y - x - 2 = 0

Sol. Equation of any line perpendicular to the given line x + y + 1 = 0 is x - y + k = 0 ...(*i*) If eq. (*i*) passes through the point (1, 2) then

 $1 - 2 + k = 0 \implies k = 1$ Putting the value of *k* is eq. (*i*) we have $x - y + 1 = 0 \implies y - x - 1 = 0$ Hence, the correct option is (*b*).

Q26. The tangent of angle between the line whose intercepts on the axes are $a_{i} - b$ and $b_{i} - a$ respectively are

(a)
$$\frac{a^2 - b^2}{ab}$$
 (b) $\frac{b^2 - a^2}{2}$
(c) $\frac{b^2 - a^2}{2ab}$ (d) None of these

Sol. First equation of line having intercepts on the axes

$$a, -b$$
 is $\frac{x}{a} - \frac{y}{b} = 1 \implies bx - ay = ab$...(*i*)
Second equation of line having intercepts on the axes

$$b_{r} - a \text{ is } \frac{x}{b} - \frac{y}{a} = 1 \implies ax - by = ab \qquad \dots(ii)$$

Slope of eq. (i) $m_{1} = \frac{b}{a}$
Slope of eq. (ii) $m_{2} = \frac{a}{b}$
$$\therefore \qquad \tan \theta = \left| \frac{m_{1} - m_{2}}{1 + m_{1}m_{2}} \right|$$
$$= \frac{\frac{b}{a} - \frac{a}{b}}{1 + \frac{a}{b}\frac{b}{a}} = \frac{b^{2} - a^{2}}{2ab}$$

Hence, the correct option is (c)

Hence, the correct option is (*c*).

- **Q27.** If the line $\frac{x}{a} + \frac{y}{b} = 1$ passes through the points (2, -3) and (4, -5) then (a, b) is
 - (*a*) (1, 1) (*b*) (-1, 1) (c) (1, -1)(d) (-1, -1)

 \Rightarrow \Rightarrow \Rightarrow \Rightarrow

Sol. Equation of line passing through the points (2, -3) and (4, -5) is

$y+3 = \frac{-5+3}{4-2}(x-2)$
$y + 3 = \frac{-2}{2}(x - 2)$
$y+3=-\left(x-2\right)$
y+3 = -x+2
x + y = -1

$$\Rightarrow \frac{x}{-1} + \frac{y}{-1} = 1 \quad \text{(Intercept form)}$$

$$\therefore a = -1, b = -1$$

Hence, the correct option is (*d*).

Q28. The distance of the point of intersection of the lines 2x - 3y + 5 = 0 and 3x + 4y = 0 from the line 5x - 2y = 0 is

(a)
$$\frac{100}{17\sqrt{29}}$$
 (b) $\frac{10}{7\sqrt{29}}$
(c) $\frac{130}{7}$ (d) None of these

Sol. Given equations are:

$$2x - 3y + 5 = 0 \qquad ...(i)$$

$$3x + 4y = 0 \qquad \dots (n)$$

From eq. (ii) we get,

 \Rightarrow

$$4y = -3x \implies y = \frac{-3}{4}x \qquad \dots(iii)$$

Putting the value of y in eq. (i) we have

$$2x - 3\left(\frac{-3}{4}x\right) + 5 = 0$$

$$\Rightarrow \qquad 8x + 9x + 20 = 0$$

$$\Rightarrow \qquad 17x + 20 = 0$$

$$\Rightarrow \qquad x = \frac{-20}{17}$$

Putting the value of *x* in eq. (*iii*) we get

$$y = \frac{-3}{4} \left(\frac{-20}{17}\right)$$
$$y = \frac{15}{17}$$
(-20, 15)

 \therefore Point of intersection is $\left(-\frac{20}{177}, \frac{15}{17}\right)$.

Now perpendicular distance from the point $\left(-\frac{20}{17}, \frac{15}{17}\right)$ to the given line 5x - 2y = 0 is

$$\frac{5\left(-\frac{20}{17}\right)-2\left(\frac{15}{17}\right)}{\sqrt{25+4}} = \frac{\left|\frac{-100}{17}-\frac{30}{17}\right|}{\sqrt{29}} = \frac{130}{17\sqrt{29}}$$

Hence, the correct option is (*a*).

Q29. The equation of the lines which pass through the point (3, -2)and are inclined at 60° to the line $\sqrt{3x + y} = 1$ is (a) y + 2 = 0, $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$ (b) x - 2 = 0, $\sqrt{3}x - y + 2 + 3\sqrt{3} = 0$ (c) $\sqrt{3}x - y - 2 - 3\sqrt{3} = 0$ (d) None of these Sol. Equation of line is given by $\sqrt{3}x + y + 1 = 0$ $y = -\sqrt{3}x - 1$ \Rightarrow :. Slope of this line, $m_1 = -\sqrt{3}$ Let m_2 be the slope of the required line $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$... $\tan 60^\circ = \frac{-\sqrt{3} - m_2}{1 + (-\sqrt{3})m_2}$ \Rightarrow $\sqrt{3} = \pm \left(\frac{-\sqrt{3} - m_2}{1 - \sqrt{3}m_2} \right)$ \Rightarrow $\sqrt{3} = \frac{-\sqrt{3} - m_2}{1\sqrt{3}m}$ [taking (+) sign] \Rightarrow $\sqrt{3} - 3m_2 = -\sqrt{3} - m_2$ $2m_2 = 2\sqrt{3} \implies m_2 = \sqrt{3}$ \Rightarrow \Rightarrow $\sqrt{3} = -\left(\frac{-\sqrt{3}-m_2}{1-\sqrt{3}m}\right)$ [taking (-) sign] and $\sqrt{3} = \frac{\sqrt{3} + m_2}{1 + \sqrt{3}m}$ \Rightarrow $\begin{array}{rl} \sqrt{3} - 3m_2 &=& \sqrt{3} + m_2 \\ 4m_2 &=& 0 \implies m_2 = 0 \end{array}$ \Rightarrow \Rightarrow : Equation of line passing through (3, – 2) with slope $\sqrt{3}$ is $y + 2 = \sqrt{3}(x - 3)$ $y + 2 = \sqrt{3}x - 3\sqrt{3}$ \Rightarrow $\Rightarrow \sqrt{3}x - y - 2 - 3\sqrt{3} = 0$ and the equation of line passing through (3, -2) with slope 0 is $y + 2 = 0(x - 3) \implies y + 2 = 0$

Hence, the correct option is (*a*).

Q30. The equation of the lines passing through the point (1, 0) and at a distance $\frac{\sqrt{3}}{2}$ from the origin are (a) $\sqrt{3}x + y - \sqrt{3} = 0, \sqrt{3}x - y - \sqrt{3} = 0$ (b) $\sqrt{3}x + y + \sqrt{3} = 0, \sqrt{3}x - y + \sqrt{3} = 0$ (c) $x + \sqrt{3}y - \sqrt{3} = 0, x - \sqrt{3}y - \sqrt{3} = 0$ (d) None of these **Sol.** Equation of any line passing through (1, 0) is $y - 0 = m(x - 1)^{-} \Rightarrow mx - y - m = 0$ Distance of the line from origin is $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{3}}{2} = \left| \frac{m \times 0 - 0 - m}{\sqrt{1 + m^2}} \right|$... $\frac{\sqrt{3}}{2} = \left| \frac{-m}{\sqrt{1+m^2}} \right|$ \Rightarrow Squaring both sides, we get $\frac{3}{4} = \frac{m^2}{1+m^2}$ $4m^2 = 3 + 3m^2 \implies 4m^2 - 3m^2 = 3$ \Rightarrow $m^2 = 3$ \therefore $m = \pm \sqrt{3}$ \Rightarrow :. Required equations are $\pm\sqrt{3}x - y \mp\sqrt{3} = 0$ $\sqrt{3}x - y - \sqrt{3} = 0$ and $-\sqrt{3}x - y + \sqrt{3} = 0$ i.e., $\Rightarrow \sqrt{3}x + y - \sqrt{3} = 0$ Hence, the correct option is (*a*). **Q31.** The distance between the lines $y = mx + c_1$ and $y = mx + c_2$ is (a) $\frac{c_1 - c_2}{\sqrt{1 + m^2}}$ (b) $\frac{|c_1 - c_2|}{\sqrt{1 + m^2}}$ (c) $\frac{c_2 - c_1}{\sqrt{1 + m^2}}$ (*d*) 0

Sol. Given equations are $y = mx + c_1$...(*i*) and $y = mx + c_2$...(*ii*) Slopes of eq. (*i*) and eq. (*ii*) are same i.e., *m* So, they are parallel lines.

:. Distance between the two lines = $\frac{|c_1 - c_2|}{\sqrt{1 + m^2}}$.

Hence, the correct option is (*b*).

Q32. The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by (a) $\left(\frac{37}{10}, \frac{-1}{10}\right)$ (b) $\left(\frac{-1}{10}, \frac{37}{10}\right)$ (c) $\left(\frac{10}{37}, -10\right)$ (d) $\left(\frac{2}{3}, -\frac{1}{3}\right)$ **Sol.** Given equation is y = 3x + 43x - y + 4 = 0...(*i*) \Rightarrow Slope = 3Equation of any line passing through the point (2, 3) is y - 3 = m(x - 2)...(*ii*) If eq. (i) is perpendicular to eq. (ii) then $m \times 3 = -1$ $[:: m_1 \times m_2 = -1]$ $m = -\frac{1}{2}$ \Rightarrow Putting the value of *m* in eq. (*ii*) we get $y-3 = -\frac{1}{3}(x-2)$ 3y - 9 = -x + 2 \Rightarrow x + 3y = 11 \Rightarrow ...(iii) Solving eq. (i) and eq. (iii) we get $3x - y = -4 \implies y = 3x + 4$...(*iv*) Putting the value of *y* in eq. (*iii*) we get x + 3(3x + 4) = 11x + 9x + 12 = 11 \Rightarrow $10x = -1 \implies x = \frac{-1}{10}$ \Rightarrow From eq. (*iv*) we get, $y = 3\left(\frac{-1}{10}\right) + 4$ $y = \frac{-3}{10} + 4 \quad \Rightarrow \quad y = \frac{37}{10}$ \Rightarrow So the required coordinates are $\left(\frac{-1}{10}, \frac{37}{10}\right)$. Hence, the correct option is (*b*). Q33. If the coordinates of the middle point of the portion of a line

- intercepted between the coordinate axes is (3, 2), then the equation of the line will be (a) 2x + 3y = 12 (b) 3x + 2y = 12
 - (a) 2x + 3y = 12(b) 5x + 2y = 12(c) 4x - 3y = 6(d) 5x - 2y = 10

Sol. Let the given line meets the axes at A(a, 0) and B(0, b). Given that C(3, 2) is the mid-point of AB

Hence, the correct option is (*a*).

Q34. Equation of the line passing through (1, 2) and parallel to the line y = 3x - 1 is

(a)
$$y + 2 = x + 1$$
 (b) $y + 2 = 3(x + 1)$

- (c) y-2=3(x-1) (d) y-2=x-1Sol. Given equation is y = 3x 1Slope = 3

Slope of the line passing through the given point (1, 2) and parallel to the given line = 3

So, the equation of the required line is

$$y - 2 = 3(x - 1)$$

Hence, the correct option is (*c*).

- **Q35.** Equations of diagonals of the squares formed by the lines x = 0, y = 0, x = 1 and y = 1 are
 - (a) y = x, y + x = 1(b) y = x, x + y = 2(c) $2y = x, y + x = \frac{1}{3}$ (d) y = 2x, y + 2x = 1
- **Sol.** Given equation x = 0, y = 0, x = 1 and y = 1 form a square of side 1 unit

From figure, we get that OABC is square having corners O(0, 0), A(1, 0), B(1, 1) and C(0, 1) Y

Equation of diagonal AC

$$y - 0 = \frac{1 - 0}{0 - 1} (x - 1)$$

$$\Rightarrow \quad y = -(x - 1)$$

$$\Rightarrow \quad y = -x + 1$$

$$\Rightarrow \quad y + x = 1$$
Equation of diagonal OB is
$$(0, 1) C$$

$$y = 1$$

$$x = 0$$

$$x = 0$$

$$y = 0$$

$$A(1, 0)$$

$$y - 0 = \frac{1 - 0}{1 - 0} (x - 0)$$

 $\Rightarrow \qquad y = x$

Hence, the correct option is (*a*).

- **Q36.** For specifying a straight line, how many geometrical parameters should be known?
- **Sol.** Different form of equation of straight lines are Slope intercept form, y = mx + c, Parameter = 2 Intercept form, $\frac{x}{a} + \frac{y}{b} = 1$, Parameter = 2 One-point form, $y - y_1 = m(x - x_1)$, Parameter = 2 Normal form, $x \cos w + y \sin w = P$, Parameter = 2 Hence, the correct option is (*b*).
- **Q37.** The point (4, 1) undergoes the following two successive transformation:
 - (*i*) Reflection about the line y = x
 - (*ii*) Translation through a distance 2 units along the positive *x*-axis
 - (a) (4,3) (b) (3,4) (7,7)

(c) (1, 4) (d)
$$\left(\frac{7}{2}, \frac{7}{2}\right)$$

Sol. Let the reflection of A(4, 1) in y = x be B(*a*, *b*) mid-point of AB (4 + a, 1 + h)

$$= \left(\frac{4+a}{2}, \frac{1+b}{2}\right) \text{ which lies on } y = x$$

$$\Rightarrow \qquad \frac{4+a}{2} = \frac{1+b}{2}$$

$$\Rightarrow \qquad 4+a = 1+b$$

$$\Rightarrow \qquad a-b = -3 \qquad \dots(i)$$

The slope of the line y = x is 1 and slope of AB = $\frac{b-1}{a-4}$

$$\therefore \qquad 1\left(\frac{b-1}{a-4}\right) = -1$$

$$\Rightarrow \qquad b-1 = -a+4$$

$$\Rightarrow \qquad a+b = 5 \qquad \dots(ii)$$
Solving eq. (i) and eq. (ii) we get
$$a = 1 \text{ and } b = 4$$

$$\therefore \text{ The point after translation is (1 + 2, 4) or (3, 4).}$$
Hence, the correct option is (b).

Q38. A point equidistant from the lines 4x + 3y + 10 = 0, 5x - 12y + 26 = 0 and 7x + 24y - 50 = 0 is (a) (1, -1) (b) (1, 1)

$$\begin{array}{cccc} (a) & (1, -1) & (b) & (1, 1) \\ (c) & (0, 0) & (d) & (0, 1) \end{array}$$

Sol. Given equations are

$$4x + 3y + 10 = 0 \qquad \dots (i)$$

$$5x - 12y + 26 = 0$$
 ...(*ii*)

and
$$7x + 24y - 50 = 0$$
 ...(*iii*)

Let (x_1, y_1) be any point equidistant from eq. (*i*), eq. (*ii*) and eq. (*iii*).

Distance of (x_1, y_1) from eq. (*i*)

$$= \left| \frac{4x_1 + 3y_1 + 10}{\sqrt{16 + 9}} \right| = \left| \frac{4x_1 + 3y_1 + 10}{5} \right|$$

Distance of (x_1, y_1) from eq. (*ii*)

$$= \left| \frac{5x_1 - 12y_1 + 26}{\sqrt{25 + 144}} \right| = \left| \frac{5x_1 - 12y_1 + 26}{13} \right|$$

Distance of (x_1, y_1) from eq. (*iii*)

$$= \left| \frac{7x_1 + 24y_1 - 50}{\sqrt{49 + 576}} \right| = \left| \frac{7x_1 + 24y_1 - 50}{25} \right|$$

If the point (x_1, y_1) is equidistant from the given lines, then

$$\left|\frac{4x_1 + 3y_1 + 10}{5}\right| = \left|\frac{5x_1 - 12y_1 + 26}{13}\right| = \left|\frac{7x_1 + 24y_1 - 50}{25}\right|$$

We see that putting $x_1 = 0$ and $y_1 = 0$, the above relation is satisfied i.e.,

$$\frac{10}{5} = \frac{26}{13} = \frac{50}{25} = 2$$

Hence, the correct option is (*c*).

Q39. A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its *y*-intercept is

(a)
$$\frac{1}{3}$$
 (b) $\frac{2}{3}$
(c) 1 (d) $\frac{4}{3}$

Sol. Any line perpendicular to 3x + y = 3 $x - 3y = \lambda$ (λ = constant) If it passes through the point (2, 2) then $2 - 3(2) = \lambda \implies \lambda = -4$

$$\therefore \text{ Required equation is } x - 3y = -4$$

$$\Rightarrow \qquad -3y = -x - 4$$

$$\Rightarrow \qquad y = \frac{1}{3}x + \frac{4}{3} \qquad [\because y = mx + c]$$
So, the y-intercept is $\frac{4}{3}$. Hence, the correct option is (d).
Q40. The ratio in which the line $3x + 4y + 2 = 0$ divides the distance between the lines $3x + 4y + 5 = 0$ and $3x + 4y - 5 = 0$ is
(a) 1:2 (b) 3:7
(c) 2:3 (d) 2:5
Sol. The given equations are
 $3x + 4y + 5 = 0$...(i)
and $3x + 4y + 5 = 0$...(ii)
and $3x + 4y + 2 = 0$...(ii)
 $3x + 4y - 5 = 0$...(ii)
and $3x + 4y + 2 = 0$...(ii)
 $3x + 4y - 5 = 0$
Clearly, eq. (i), (ii) and (iii) are
parallel to each other as the
 $2x + 4y - 5 = 0$
Distance between parallel lines (i) and (iii) we get
 $\left| \frac{5-2}{\sqrt{(3)^2 + (4)^2}} \right| = \frac{3}{5}$
 $\left| \because \text{Distance between two} \right|$
parallel lines $= \left| \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right|$
Distance between parallel lines (ii) and (iii) we get
 $\left| \frac{-5-2}{\sqrt{(3)^2 + (4)^2}} \right| = \frac{7}{5}$
 \therefore Ratio between the distances $= \frac{3}{5} : \frac{7}{5} = 3 : 7$
Hence, the correct option is (b).
Q41. One vertex of the equilateral triangle with centroid at the origin
and one side as $x + y - 2 = 0$ is
(a) $(-1, -1)$ (b) $(2, 2)$
(c) $(-2, -2)$ (d) $(2, -2)$
Sol. Let ABC be an equilateral triangle
with vertex (x_1, y_1) .
AD \bot BC and let (a, b) be the
coordinates of D.
Given that the centroid G lies
at the origin i.e., (0, 0)
B

25

Since, the centroid of a triangle, divides the median in the ratio 1:2 $0 = \frac{1 \times x_1 + 2 \times a}{1 + 2}$ So, $\Rightarrow x_1 + 2a = 0$...(*i*) $0 = \frac{1 \times y_1 + 2 \times b}{1 + 2} \implies y_1 + 2b = 0$ and ...(*ii*) Equations of BC is given by x + y - 2 = 0...(iii) Point D(*a*, *b*) lies on the line x + y - 2 = 0So a + b - 2 = 0...(*iv*) Slope of eq. (*iii*) is = -1the slope of AG = $\frac{y_1 - 0}{x_1 - 0} = \frac{y_1}{x_1}$ and Since, they are perpendicular to each other $-1 \times \frac{y_1}{x_1} = -1 \implies y_1 = x_1$... From eq. (i) and (ii) we get $x_1 + 2a = 0 \implies 2a = -x_1$ $y_1 + 2b = 0 \implies 2b = -y_1$ a = b... From eq. (*iv*) we get a + b - 2 = 0a + a - 2 = 0 \Rightarrow \Rightarrow $2a-2=0 \implies a=1 \text{ and } b=1 \quad [\because a=b]$... $x_1 = -2 \times 1 = -2$ $y_1 = -2 \times 1 = -2$ and Hence, the correct option is (*c*). Fill in the Blanks: **Q42.** If *a*, *b*, *c* are in A.P. then the straight line ax + by + c = 0 will always pass through

Sol. Given equation is ax + by + c = 0...(*i*) Since *a*, *b* and *c* are in A.P. $b = \frac{a+c}{2}$... a + c = 2b \Rightarrow a - 2b + c = 0...(*ii*) \Rightarrow Comparing eq. (i) with eq. (ii) we get,

$$x = 1, y = -2$$

So, the line will pass through (1, -2)Hence, the value of the filler is (1, -2).

- **Q43.** The line which cuts off equal intercepts from the axes and pass through the point (1, -2) is
- **Sol.** Intercept form of the line is

$$\frac{x}{a} + \frac{y}{b} = 1 \qquad \dots (i)$$

Given that a = b

...

$$\frac{x}{a} + \frac{y}{a} = 1 \implies x + y = a \qquad \dots (ii)$$

If the line (*i*) passes through (1, -2) we get

$$1-2 = a \implies a = -1$$

So, the required equation is $x + y = -1 \implies x + y + 1 = 0$. Hence, the value of the filler is x + y + 1 = 0.

Q44. Equations of the lines through the point (3, 2) and making an angle of 45° with the line x - 2y = 3 are

Sol. Given line is x - 2y = 3 and the point is (3, 2) Equation of a line passing through the point (3, 2) is y - 2 = m(x - 3)

$$y-2 = m(x-3)$$
 ...(*i*)
Angle between eq. (*i*) and the given line $x - 2y = 3$ whose slope

is
$$\frac{1}{2}$$

 \therefore $\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$
 \Rightarrow $\tan 45^\circ = \left| \frac{m - \frac{1}{2}}{1 + m \times \frac{1}{2}} \right|$
 \Rightarrow $1 = \left| \frac{m - \frac{1}{2}}{1 + \frac{m}{2}} \right| \Rightarrow \frac{m - \frac{1}{2}}{1 + \frac{m}{2}} = \pm 1$

Taking (+) sign,

$$\frac{m-\frac{1}{2}}{1+\frac{m}{2}} = 1 \implies m-\frac{1}{2} = 1+\frac{m}{2}$$
$$\implies m-\frac{m}{2} = 1+\frac{1}{2}$$
$$\implies \frac{m-\frac{m}{2}}{2} = \frac{1}{2} \implies m=3$$

Taking (-) sign,

$$\frac{m-\frac{1}{2}}{1+\frac{m}{2}} = -1 \implies m-\frac{1}{2} = -1-\frac{m}{2}$$

$$\implies m+\frac{m}{2} = -1+\frac{1}{2}$$

$$\implies m = -\frac{1}{3}$$

So, the required equations are, When m = 3,

$$y-2 = 3(x-3)$$

$$\Rightarrow \qquad y-2 = 3x-9$$

$$\Rightarrow \qquad 3x-y-7 = 0$$
When $m = -\frac{1}{3}$

$$y-2 = -\frac{1}{3}(x-3)$$

$$\Rightarrow \qquad 3y-6 = -x+3$$

$$\Rightarrow \qquad x+3y-9 = 0$$
Hence the value of the filler is $2x = 4, \ 7 = 0$ and

Hence, the value of the filler is 3x − y − 7 = 0 and x + 3y − 9 = 0.
 Q45. The points (3, 4) and (2, − 6) are situated on the of the line 3x − 4y − 8 = 0.

Sol. Given line is 3x - 4y - 8 = 0 ...(*i*) and the given points are (3, 4) and (2, -6). For point (3, 4), line becomes = 3(3) - 4(4) - 8= 9 - 16 - 8= 9 - 24 = -15 < 0For the point (2, -6), line becomes = 3(2) - 4(-6) - 8= 6 + 24 - 8 = 30 - 8= 22 > 0

So, the points (3, 4) and (2, -6) are situated on the opposite sides of 3x - 4y - 8 = 0.

Hence, the value of the filler is **opposite**.

- **Q46.** A point moves so that square of its distance from the point (3, -2) is numerically equal to its distance from the line 5x 12y = 3. The equation of its locus is
- **Sol.** The given equation of line is 5x 12y = 3 and the given point is (3, -2).

Let (*a*, *b*) be any moving point

:. Distance between (a, b) and the point (3, -2)

$$= \sqrt{(a-3)^2 + (b+2)^2}$$

and the distance of (a, b) from the line 5x - 12y = 3

$$= \left| \frac{5a - 12b - 3}{\sqrt{25 + 144}} \right| = \left| \frac{5a - 12b - 3}{13} \right|$$

According to the question, we have

$$\left[\sqrt{(a-3)^2 + (b+2)^2}\right]^2 = \left|\frac{5a-12b-3}{13}\right|$$

$$\Rightarrow \qquad (a-3)^2 + (b+2)^2 = \frac{5a-12b-3}{13}$$

Taking numerical values only, we have

$$(a-3)^{2} + (b+2)^{2} = \frac{5a-12b-3}{13}$$

$$\Rightarrow \qquad a^{2}-6a+9+b^{2}+4b+4 = \frac{5a-12b-3}{13}$$

$$\Rightarrow \qquad a^{2}+b^{2}-6a+4b+13 = \frac{5a-12b-3}{13}$$

$$\Rightarrow \qquad 13a^{2}+13b^{2}-78a+52b+169 = 5a-12b-3$$

$$\Rightarrow 13a^2 + 13b^2 - 83a + 64b + 172 = 0$$

So, the locus of the point is $13x^2 + 13y^2 - 83x + 64y + 172 = 0$.

Hence, the value of the filler is $13x^2 + 13y^2 - 83x + 64y + 172 = 0$. Q47. Locus of the mid-points of the portion of the line $x \sin \theta + y \cos \theta = p$ intercepted between the axis is

Sol. Given equation of the line is

 $x\cos\theta + y\sin\theta = p \qquad \dots(i)$

Let C(h, k) be the mid-point of the given line AB where it meets the two axis at A(a, 0) and B(0, b).

$$\therefore \qquad h = \frac{0+a}{2} \implies a = 2h$$

and
$$k = \frac{b+0}{2} \implies b = 2k$$

Putting the values of *a* and *b* is eq. (*ii*) and (*iii*) we get

$$2h = \frac{p}{\cos \theta} \implies \cos \theta = \frac{p}{2h}$$
 ...(*iv*)

and

$$2k = \frac{p}{\sin \theta} \implies \sin \theta = \frac{p}{2k} \qquad \dots (v)$$

Squaring and adding eq. (iv) and (v) we get

$$\Rightarrow \cos^2 \theta + \sin^2 \theta = \frac{p^2}{4h^2} + \frac{p^2}{4k^2}$$

$$\Rightarrow \qquad 1 = \frac{p^2}{4h^2} + \frac{p^2}{4k^2}$$

So, the locus of the mid-point is

$$1 = \frac{p^2}{4x^2} + \frac{p^2}{4y^2}$$

$$\Rightarrow \qquad 4x^2y^2 = p^2(x^2 + y^2)$$

Hence, the value of the filler is $4x^2y^2 = p^2(x^2 + y^2)$.

State True or False:

 \Rightarrow

- Q48. If the vertices of a triangle have integral coordinates, then the triangle cannot be equilateral.
- Sol. We know that if the vertices of triangle has integral coordinates, then the triangle can not be equilateral. So, the given statement is **True**.
- **Q49.** The points A(– 2, 1), B(0, 5) and C(– 1, 2) are collinear.
- **Sol.** Given points are A(-2, 1), B(0, 5), C(-1, 2)

Area of
$$\triangle ABC = \frac{1}{2} \begin{vmatrix} -2 & 1 & 1 \\ 0 & 5 & 1 \\ -1 & 2 & 1 \end{vmatrix}$$
$$= \frac{1}{2} \begin{vmatrix} -2 & 5 & 1 \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} 0 & 1 \\ -1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 0 & 5 \\ -1 & 2 \end{vmatrix}$$
$$= \frac{1}{2} \begin{vmatrix} -2(5-2) - 1(0+1) + 1(0+5) \end{vmatrix}$$
$$= \frac{1}{2} \begin{vmatrix} -2 \times 3 - 1 \times 1 + 1 \times 5 \end{vmatrix}$$

$$= \frac{1}{2} |-6 - 1 + 5|$$
$$= \frac{1}{2} |-2| = 1 \text{ sq. unit}$$

So, the given points are not collinear.

Hence, the given statement is **False**.

- **Q50.** Equation of the line passing through the point $(a \cos^3 \theta, a \sin^3 \theta)$ and perpendicular to the line $x \sec \theta + y \csc \theta = a$ is $x \cos \theta - y \sin \theta = a \sin 2\theta$.
- **Sol.** Equation of any line perpendicular to $x \sec \theta + y \csc \theta = a$ is $x \csc \theta y \sec \theta = k$...(*i*)

If eq. (*i*) passes through
$$(a \cos^3 \theta, a \sin^3 \theta)$$
 then $a \cos^3 \theta$.cosec $\theta - a \sin^3 \theta$.sec $\theta = k$

$$\Rightarrow \frac{a\cos^3\theta}{\sin\theta} - \frac{a\sin^3\theta}{\cos\theta} = k$$

:. Required equation is

$$x \operatorname{cosec} \theta - y \operatorname{sec} \theta = \frac{a \cos^3 \theta}{\sin \theta} - \frac{a \sin^3 \theta}{\cos \theta}$$
$$\Rightarrow \quad \frac{x}{\sin \theta} - \frac{y}{\cos \theta} = a \left[\frac{\cos^4 \theta - \sin^4 \theta}{\sin \theta \cos \theta} \right]$$
$$\Rightarrow \quad \frac{x \cos \theta - y \sin \theta}{\sin \theta \cos \theta} = a \left[\frac{(\cos^2 \theta + \sin^2 \theta) (\cos^2 \theta - \sin^2 \theta)}{\sin \theta \cos \theta} \right]$$
$$\Rightarrow \quad x \cos \theta - y \sin \theta = a (\cos^2 \theta - \sin^2 \theta)$$

$$\Rightarrow x \cos \theta - y \sin \theta = a \cos 2\theta.$$

Hence, the given statement is False.

Q51. The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y - 10 = 0 and 2x + y + 5 = 0.

Sol. Given equations are x + 2y - 10 = 0...(*i*) and 2x + y + 5 = 0...(*ii*) x = 10 - 2yFrom eq. (*i*) ...(iii) Putting the value of *x* in eq. (*ii*) we get 2(10-2y) + y + 5 = 020 - 4y + y + 5 = 0 \Rightarrow -3y + 25 = 0 \Rightarrow $y = \frac{25}{3}$ \Rightarrow Putting the value of *y* in eq. (*iii*) we get

$$x = 10 - 2\left(\frac{25}{3}\right)$$

...

$$= \frac{30-50}{3} = \frac{-20}{3}$$
Point = $\left(\frac{-20}{3}, \frac{25}{3}\right)$

If the given line 5x + 4y = 0 passes through the point $\left(\frac{-20}{3}, \frac{25}{3}\right)$ then

$$5\left(\frac{-20}{3}\right) + 4\left(\frac{25}{3}\right) = 0$$

$$\Rightarrow \qquad \frac{-100}{3} + \frac{100}{3} = 0$$

$$\Rightarrow \qquad 0 = 0 \text{ satisfied.}$$

So, the given line passes through the point of intersection of the given lines.

Hence, the given statement is **True**.

- **Q52.** The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then, the other two sides are $y 3 = (2 \pm \sqrt{3})(x 2)$.
- **Sol.** Let ABC be an equilateral triangle with vertex (2, 3) and the opposite side is x + y = 2 with slope -1. Suppose slope of line AB is *m*.

Since each angle of equilateral triangle is 60°.

: Angle between AB and BC

Taking (+) sign,

$$\sqrt{3} = \frac{1+m}{1-m} \implies \sqrt{3} - \sqrt{3}m = 1+m$$
$$\implies \sqrt{3}m + m = \sqrt{3} - 1$$
$$\implies m(\sqrt{3}+1) = \sqrt{3} - 1$$
$$\implies m = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}$$

$$\Rightarrow \qquad m = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \times \frac{\sqrt{3} - 1}{\sqrt{3} - 1}$$
$$\Rightarrow \qquad m = \frac{3 + 1 - 2\sqrt{3}}{3 - 1} = 2 - \sqrt{3}$$

Taking (–) sign, $m = 2 + \sqrt{3}$ So, the equations of other two lines are

$$y-3 = (2 \pm \sqrt{3})(x-2)$$

Hence, the statement is **True**.

- **Q53.** The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y - 1 = 0 and 7x - 3y - 35 = 0 is equidistant from the points (0, 0) and (8, 34).
- Sol. Given equations are

and

$$4x + y - 1 = 0$$
 ...(*i*)

$$7x - 3y - 35 = 0$$
 ...(*ii*)

From eq. (*i*)
$$y = 1 - 4x$$
 ...(*iii*)

Putting the value of *y* in eq. (*ii*) we get

- 7x 3(1 4x) 35 = 0
- 7x 3 + 12x 35 = 0 \Rightarrow 19x - 38 = 0 \Rightarrow
- \Rightarrow x = 2

From eq. (iii) we get, $y = 1 - 4 \times 2 \implies y = -7$ The point of intersection is (2, -7).

Equation of line joining the point (3, 5) to the point (2, -7) is

$$y-5 = \frac{-7-5}{2-3}(x-3)$$

$$\Rightarrow \qquad y-5 = 12(x-3)$$

$$\Rightarrow \qquad y-5 = 12x-36$$

$$\Rightarrow \qquad 12x-y-31 = 0 \qquad \dots(iv)$$
Distance of eq. (iv) from the point (0, 0)

Distance of eq. (iv) from the point (0, 0)

$$= \left| \frac{-31}{\sqrt{(12)^2 + (-1)^2}} \right| = \frac{31}{\sqrt{145}}$$

Distance of eq. (*iv*) from the point (8, 34) is

$$= \left| \frac{12 \times 8 - 34 - 31}{\sqrt{(12)^2 + (-1)^2}} \right|$$
$$= \left| \frac{96 - 65}{\sqrt{145}} \right| = \frac{31}{\sqrt{145}}$$

Hence, the given statement is **True**.

- Q54. The line $\frac{x}{a} + \frac{y}{b} = 1$ moves in such a way that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$ where *c* is a constant. The locus of the foot of the perpendicular from the origin on the given line is $x^2 + y^2 = c^2$.
- **Sol.** The given equation is $\frac{x}{a} + \frac{y}{b} = 1$...(*i*)

Equation of the line passing through (0, 0) and perpendicular to eq. (i) is

$$\frac{x}{b} - \frac{y}{a} = 0 \qquad \dots (ii)$$

Squaring and adding eq. (i) and (ii) we get

$$\left(\frac{x}{a} + \frac{y}{b}\right)^2 + \left(\frac{x}{b} - \frac{y}{a}\right)^2 = 1 + 0$$

$$\Rightarrow \qquad \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{2xy}{ab} + \frac{x^2}{b^2} + \frac{y^2}{a^2} - \frac{2xy}{ab} = 1$$

$$\Rightarrow \qquad x^2 \left(\frac{1}{a^2} + \frac{1}{b^2}\right) + y^2 \left(\frac{1}{b^2} + \frac{1}{a^2}\right) = 1$$

$$\Rightarrow \qquad (x^2 + y^2) \left(\frac{1}{a^2} + \frac{1}{b^2}\right) = 1$$

$$\Rightarrow \qquad (x^2 + y^2) \left(\frac{1}{a^2} + \frac{1}{b^2}\right) = 1$$

$$\Rightarrow \qquad (x^2 + y^2) \left(\frac{1}{c^2}\right) = 1 \left[\because \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}\right]$$

$$\Rightarrow \qquad x^2 + y^2 = c^2$$

Hence, the given statement is **True**.

- **Q55.** The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent, if *a*, *b* and *c* are in G.P.
- Sol. Given equations are

$$ax + 2y + 1 = 0$$
 ...(*i*)
 $bx + 3y + 1 = 0$...(*ii*)

$$cx + 4y + 1 = 0$$
 ...(*iii*)

1

cx + 4y + 1 = 0Solving eq. (*i*) and (*ii*) we get

b

$$ax + 2y + 1 = 0 \implies y = \frac{-ax - 1}{2}$$

Putting the value of *y* in eq. (*ii*) we have

$$bx + 3\left(\frac{-ax-1}{2}\right) + 1 = 0$$

$$\Rightarrow \quad 2bx - 3ax - 3 + 2 = 0$$

$$\Rightarrow \quad (2b - 3a)x = 1$$

$$\Rightarrow \qquad x = \frac{1}{2b - 3a}$$
$$\therefore \qquad y = \frac{-a\left(\frac{1}{2b - 3a}\right) - 1}{2}$$
$$= \frac{-a - 2b + 3a}{2(2b - 3a)}$$
$$= \frac{2a - 2b}{2(2b - 3a)} = \frac{a - b}{2b - 3a}$$

So, the point of intersection of eq. (i) and (ii) is

$$\left(\frac{1}{2b-3a},\frac{a-b}{2b-3a}\right).$$

If eq. (*i*), (*ii*) and (*iii*) are concurrent, then the above point must lie on eq. (*iii*)

1

$$cx + 4y + 1 = 0$$

$$\Rightarrow c\left[\frac{1}{2b - 3a}\right] + 4\left[\frac{a - b}{2b - 3a}\right] + 1 = 0$$

$$\Rightarrow \frac{c + 4a - 4b + 2b - 3a}{2b - 3a} = 0$$

$$\Rightarrow c + a - 2b = 0$$

$$\Rightarrow 2b = a + c$$

So, *a*, *b* and *c* are in A.P. and not in G.P.

Hence, the given statement is **False**.

- **Q56.** Line joining the points (3, -4) and (-2, 6) is perpendicular to the line joining the points (-3, 6) and (9, -18).
- **Sol.** The given points are (3, 4) and (– 2, 6), (– 3, 6) and (9, 18). Slope of the line joining the points (3, 4) and (– 2, 6)

$$m_1 = \frac{6+4}{-2-3} = \frac{10}{-5} = -2$$

Slope of the line joining the points (-3, 6) and (9, -18)

$$m_2 = \frac{-18 - 6}{9 + 3} = \frac{-24}{12} = -2$$

Since $m_1 = m_2 = -2$

So, the lines are parallel and not perpendicular.

Hence, the given statement is False.

Q57. Match the Column:

Column I

(b)

- (*a*) The coordinate of the points (*i* P and Q on the line x + 5y = 13 which are at a distance of 2 units from the line 12x 5y + 26 = 0 are
- (*b*) The coordinates of the point on the line x + y = 4, which are (at a unit distance from the line 4x + 3y - 10 = 0 are
- (c) The coordinates of the point on the line joining A(- 2, 5) and (3, 1) such that AP = PQ = QB are

$$(ii) \quad \left(\frac{-1}{3}, \frac{11}{3}\right), \left(\frac{4}{3}, \frac{7}{3}\right)$$

$$(iii) \quad \left(1,\frac{12}{5}\right), \left(-3,\frac{16}{5}\right)$$

Sol. (*a*) Let $P(x_1, y_1)$ be any point on the given line x + 5y = 13 $\therefore x_1 + 5y_1 = 13$

Distance of line 12x - 5y + 26 = 0 from the point P(x_1, y_1)

$$2 = \left| \frac{12x_1 - 5y_1 + 26}{\sqrt{(12)^2 + (-5)^2}} \right|$$

$$\Rightarrow \qquad 2 = \left| \frac{12x_1 - (13 - x_1) + 26}{13} \right|$$

$$\Rightarrow \qquad 2 = \left| \frac{12x_1 - 13 + x_1 + 26}{13} \right|$$

$$\Rightarrow \qquad 2 = \left| \frac{13x_1 + 13}{13} \right|$$

$$\Rightarrow \qquad 2 = \frac{13x_1 + 13}{13} \right|$$

$$\Rightarrow \qquad 2 = \frac{13x_1 + 13}{13} = 1 \qquad \text{(Taking (+) sign)}$$

and

$$2 = -x_1 - 1 \qquad \Rightarrow \qquad x_1 = -3 \qquad \text{(Taking (-) sign)}$$

Putting the values of x_1 in eq. $x_1 + 5y_1 = 13$.
We get $y_1 = \frac{12}{5}$ and $\frac{16}{5}$.
So, the required points are $\left(1, \frac{12}{5}\right)$ and $\left(-3, \frac{16}{5}\right)$.
Hence, $(a) \leftrightarrow (iii)$.
Let $P(x_1, y_1)$ be any point on the given line

$$x + y = 4 \qquad \therefore x_1 + y_1 = 4 \qquad \dots(i)$$

Distance of the line 4x + 3y - 10 = 0 from the point P(x_1, y_1)

 $1 = \left| \frac{4x_1 + 3y_1 - 10}{\sqrt{(4)^2 + (3)^2}} \right|$ $1 = \left| \frac{4x_1 + 3(4 - x_1) - 10}{5} \right|$ \Rightarrow $1 = \left| \frac{4x_1 + 12 - 3x_1 - 10}{5} \right|$ \Rightarrow $1 = \left| \frac{x_1 + 2}{5} \right|$ \Rightarrow $1 = \pm \left(\frac{x_1 + 2}{5}\right)$ \Rightarrow $\frac{x_1+2}{5} = 1$ (Taking (+) sign) \Rightarrow $x_1 + 2 = 5 \implies x_1 = 3$ \Rightarrow $\frac{x_1+2}{5} = -1$ and (Taking (-) sign) $x_1 + 2 = -5 \implies x_1 = -7$ \Rightarrow Putting the values of x_1 in eq. (*i*) we get $x_1 + y_1 = 4$ at $x_1 = 3$, $y_1 = 1$ at $x_1 = -7$, $y_1 = 11$ So, the required points are (3, 1) and (-7, 11). Hence, $(b) \leftrightarrow (i)$. (c) Given that AP = PQ = QBEquation of line joining A(-2, 5) and B(3, 1) is $y-5=\frac{1-5}{2+2}(x+2)$ $y-5 = \frac{-4}{5}(x+2)$ A (-2,5) P Q (3,1) B \Rightarrow 5y - 25 = -4x - 8 \Rightarrow $\Rightarrow 4x + 5y - 17 = 0$ Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be any two points on the line AB $P(x_1, y_1)$ divides the line AB in the ratio 1 : 2 $x_1 = \frac{1.3 + 2(-2)}{1+2} = \frac{3-4}{2} = \frac{-1}{2}$ *.*..

$$y_1 = \frac{1.1 + 2.5}{1 + 2} = \frac{1 + 10}{3} = \frac{11}{3}$$

So, the coordinates of $P(x_1, y_1) = \left(\frac{-1}{3}, \frac{11}{3}\right)$. Now point $Q(x_2, y_2)$ is the mid-point of PB

$$\therefore \qquad x_2 = \frac{3 - \frac{1}{3}}{2} = \frac{4}{3}$$

$$y_2 = \frac{1 + \frac{11}{3}}{2} = \frac{7}{3}$$
Hence, the coordinates of $Q(x_2, y_2) = \left(\frac{4}{3}, \frac{7}{3}\right)$

Hence, $(c) \leftrightarrow (ii)$.

Q58. The value of the λ , if the lines $(2x + 3y + 4) + \lambda(6x - y + 12) = 0$ are

	Column I		Column II		
	(<i>a</i>)	Parallel to <i>y</i> -axis is	(<i>i</i>)	$\lambda = -\frac{3}{4}$	
	(<i>b</i>)	Perpendicular to $7x + y - 4 = 0$	(ii)	$\lambda = -\frac{1}{3}$	
	(c)	Passes through (1, 2) is	(iii)	$\lambda = -\frac{17}{41}$	
	(<i>d</i>)	Parallel to <i>x</i> -axis is	(<i>iv</i>)	$\lambda = 3$	
	⇒ If eq Hene	Given equation is $(2x + 3y + 4) + \lambda(6x - y + 12) =$ $(2 + 6\lambda)x + (3 - \lambda)y + 4 + 12\lambda =$ $(i) \text{ is parallel to } y \text{-axis, then}$ $3 - \lambda = 0 \implies \lambda = 3$ $\text{ce, } (a) \leftrightarrow (iv)$			(i)
(b)	(b) Given lines are $(2x + 3y + 4) + \lambda(6x - y + 12) = 0$ $\Rightarrow \qquad (2 + 6\lambda)x + (3 - \lambda)y + 4 + 12\lambda = 0$				(i)
	Seco	Slope = $-\left(\frac{2+6\lambda}{3-\lambda}\right)$ nd equation is $7x + y - 4 = 0$ Slope = -7			(<i>ii</i>)

If eq. (*i*) and eq. (*ii*) are perpendicular to each other

$$(-7)\left[-\left(\frac{2+6\lambda}{3-\lambda}\right)\right] = -1$$

$$\Rightarrow \qquad \frac{14+42\lambda}{3-\lambda} = -1$$

$$\Rightarrow \qquad 14+42\lambda = -3+\lambda$$

$$\Rightarrow \qquad 42\lambda-\lambda = -17$$

$$\Rightarrow \qquad 41\lambda = -17$$

$$\Rightarrow \qquad \lambda = -\frac{17}{41}$$
Hence, (b) \leftrightarrow (iii).
(c) Given equation is $(2x+3y+4) + \lambda(6x-y+12) = 0$...(i)
If eq. (i) passes through the given point $(1, 2)$ then
 $(2 \times 1 + 3 \times 2 + 4) + \lambda(6 \times 1 - 2 + 12) = 0$

$$\Rightarrow \qquad (2+6+4) + \lambda(6-2+12) = 0$$

$$\Rightarrow \qquad (2+6+4) + \lambda(6-2+12) = 0$$

$$\Rightarrow \qquad \lambda = \frac{-12}{16} = \frac{-3}{4}$$
Hence, (c) \leftrightarrow (i).
(d) The given equation is $(2x+3y+4) + \lambda(6x-y+12) = 0$

$$\Rightarrow \qquad \lambda = \frac{-12}{16} = \frac{-3}{4}$$
Hence, (c) \leftrightarrow (i).
(d) The given equation is $(2x+3y+4) + \lambda(6x-y+12) = 0$

$$\Rightarrow \qquad (2+6\lambda)x + (3-\lambda)y + 4 + 12\lambda = 0 \qquad ...(i)$$
If eq. (i) is parallel to x-axis, then

$$2+6\lambda = 0 \Rightarrow \lambda = \frac{-1}{3}$$
Hence, (d) \leftrightarrow (ii).
(259. The equation of the line through the intersection of the lines
 $2x - 3y = 0$ and $4x - 5y = 2$ and
Column I
(a) Through the point $(2, 1)$ is
(i) $2x - y = 4$
(b) Perpendicular to the line
 $x + 2y + 1 = 0$ is
(c) Parallel to the line
 $x + 2y + 1 = 0$ is
(d) Equally inclined to the axis is
(iv) $3x - 4y - 1 = 0$
Sol. (a) Given equations are $2x - 3y = 0$
(...(i)
and $4x - 5y = 2$
(...(i)
and $4x - 5y = 2$
(...(i)
Equations of line passing through eq. (i) and (ii) we get
 $(2x - 3y) + k(4x - 5y - 2) = 0$
(...(iii)

If eq. (iii) passes through (2, 1), we get $(2 \times 2 - 3 \times 1) + k(4 \times 2 - 5 \times 1 - 2) = 0$ (4-3) + k(8-5-2) = 0 \Rightarrow 1 + k(8 - 7) = 0 \Rightarrow k = -1 \Rightarrow So, the required equation is (2x - 3y) - 1(4x - 5y - 2) = 02x - 3y - 4x + 5y + 2 = 0 \Rightarrow -2x + 2y + 2 = 0 \Rightarrow x - y - 1 = 0 \Rightarrow Hence, $(a) \leftrightarrow (iii)$. (b) Equation of any line passing through the point of intersection of the line 2x - 3y = 0 and 4x - 5y = 2 is (2x - 3y) + k(4x - 5y - 2) = 0...(*i*) (2+4k)x + (-3-5k)y - 2k = 0 \Rightarrow Slope = $\frac{-(2+4k)}{-3-5k} = \frac{2+4k}{3+5k}$ Slope of the given line x + 2y + 1 = 0 is $-\frac{1}{2}$. If they are perpendicular to each other then $-\frac{1}{2}\left(\frac{2+4k}{3+5k}\right) = -1$ $\frac{1+2k}{3+5k} = 1$ \Rightarrow 1 + 2k = 3 + 5k \Rightarrow $3k = -2 \implies k = \frac{-2}{2}$ \Rightarrow Putting the value of *k* is eq. (*i*) we get $(2x - 3y) - \frac{2}{3}(4x - 5y - 2) = 0$ 6x - 9y - 8x + 10y + 4 = 0 \Rightarrow -2x+y+4 = 0 \Rightarrow 2x - y = 4 \Rightarrow Hence, $(b) \leftrightarrow (i)$ (c) Given equations are 2x - 3y = 0...(i) 4x - 5y = 2...(*ii*)

Equation of line passing through eq. (*i*) and (*ii*) we get (2x - 3y) + k(4x - 5y - 2) = 0

NCERT Exemplar - Class 11

$$\Rightarrow (2+4k)x + (-3-5k)y - 2k = 0$$

Slope $= \frac{-(2+4k)}{-3-5k} = \frac{2+4k}{3+5k}$
Slope of the given line $3x - 4y + 5 = 0$ is $\frac{3}{4}$.
If the two equations are parallel, then
 $\frac{2+4k}{3+5k} = \frac{3}{4}$
 $\Rightarrow \qquad 8+16k = 9+15k$
 $\Rightarrow \qquad 16k-15k = 9-8$
 $\Rightarrow \qquad k = 1$
So, the equation of the required line is
 $(2x-3y) + 1(4x-5y-2) = 0$
 $2x-3y+4x-5y-2 = 0$
 $\Rightarrow \qquad 6x-8y-2 = 0$
 $\Rightarrow \qquad 3x-4y-1 = 0$
Hence, $(c) \leftrightarrow (iv)$
(d) Given equations are

$$2x - 3y = 0 \qquad ...(i) 4x - 5y - 2 = 0 \qquad ...(ii)$$

Equation of line passing through the intersection of eq. (*i*) and (*ii*) we get

$$(2x - 3y) + k(4x - 5y - 2) = 0$$

$$\Rightarrow (2 + 4k)x + (-3 - 5k)y - 2k = 0$$

Slope = $\frac{2 + 4k}{3 + 5k}$
Since the equation is equally inclined with axes

 $\therefore \text{ Slope = } \tan 135^\circ = \tan (180^\circ - 45^\circ) = -\tan 45^\circ = -1$ So $\frac{2+4k}{3+5k} = -1 \Rightarrow 2+4k = -3-5k$ $\Rightarrow 4k+5k = -3-2$ $\Rightarrow 9k = -5 \Rightarrow k = \frac{-5}{9}$

Required equation is

$$(2x - 3y) - \frac{5}{9}(4x - 5y - 2) = 0$$

$$\Rightarrow \quad 18x - 27y - 20x + 25y + 10 = 0$$

$$\Rightarrow \quad -2x - 2y + 10 = 0$$

$$\Rightarrow \quad x + y - 5 = 0$$

Hence, $(d) \Leftrightarrow (ii)$