EXEMPLAR POINT (A Complete Institute For Students

CREATING AND SETTING EXAMPLES FOR FUTURE ...

XI PHYSICS TEST ON MATHEMATICAL TOOLS

TIME : 1¹/₂ HR.

M.M : 50

1

1

- A particle moves along a straight line such that its displacement 's' at any time 't' is given 1. $S = t^3 - 6t^2 + 3t + 4$ meters. Find the velocity, when the acceleration is zero.
- Displacement of a particle is given by $x = 2.5t + 6t^2$, find its initial velocity. 2.

3. If
$$b = \frac{Zke^2 (\cot \theta/2)}{\frac{1}{2}mu^2}$$
 them how will 'b' be: (i) on increasing 'u'. (ii) on decreasing ' θ '. 2

4. 2 straight lines drawn on the same s-t graph makes angle 30° and 60°, with time axis as shown in figure. Which line represents greatest velocity? What is the ratio of the two velocities? 3

- 5. Plot a curve, $y = x^2 + 4$ and find its slope at x = 7 and 2. Also find the area bounded by this curve and xaxis from x = 0 to x = 5. 3
- 6. A conical heap of mud having radius 7cm and height 10 cm. Mud is poured at a rate of 220 cm³/s over it. Find the rate of change of its of height if radius is increasing at a rate of 0.2 cm/s. 4 7. 6
 - Differentiate the following w.r.t 'x'.

(i)
$$y = 2\sin^3 t$$
 (ii) $y = \log(\sec x) + z^2$ (iii) $y = \sin \sqrt{x}$

8. Find
$$\frac{dy}{dx}$$
: (i) $y = \sin 2x \cdot \log 2x$ (ii) $y = \frac{x^2 + 4x + 1}{x^3 + x^4}$ (iii) $y = e^x \cdot \sin x$ 6

9. Integrate to find 'y':

(i)
$$\frac{dy}{dx} = (3x+9)$$
 (ii) $\frac{dy}{dx} = \frac{1}{9x+2}$ (iii) $\frac{dy}{dx} = \sqrt{2x+1}$ (iv) $\frac{dy}{dx} = \sin(5x+7)$

10. Integrate the following:

(i)
$$\int_{\pi/8}^{\pi/4} \sin(2x) dx$$
 (ii) $\int_{e}^{e^2} \frac{1}{2x} dx$ (iii) $\int_{0}^{5} (x^2 + 4x + 1) dx$ (iv) $\int_{\log 2}^{\log 10} e^{4x}$.

11. Plot the following curves. Also tell what does their slope and area depict. (i) $eV_0 = hv - hv_0$ between 'V₀' and 'v'. (ii) S = 1/2 at² between 's' and 't'.

(iii) v = u + at between 'v' and 't'.

(iv) T = $2\pi \sqrt{\frac{l}{g}}$ between 'T' and 'l'.

8

dx

8

8