A Complete Institute For Students

CREATING AND SETTING EXAMPLES FロR FUTURE...

XI PHYSICS TEST ON MATHEMATICAL TOOLS

TIME : $11 / 2 \mathrm{HR}$.

1. A particle moves along a straight line such that its displacement ' s ' at any time ' t ' is given $S=t^{3}-6 t^{2}+3 t+4$ meters. Find the velocity, when the acceleration is zero.
2. Displacement of a particle is given by $x=2.5 t+6 t^{2}$, find its initial velocity.
3. If $\mathrm{b}=\frac{\mathrm{Zke}^{2}(\cot \theta / 2)}{\frac{1}{2} \mathrm{mu}^{2}}$ them how will ' b ' be:
(i) on increasing ' u '. (ii) on decreasing ' θ '.
4. 2 straight lines drawn on the same s-t graph makes angle 30° and 60°, with time axis as shown in figure. Which line represents greatest velocity? What is the ratio of the two velocities?

5. Plot a curve, $y=x^{2}+4$ and find its slope at $x=7$ and 2 . Also find the area bounded by this curve and x axis from $\mathrm{x}=0$ to $\mathrm{x}=5$.
6. A conical heap of mud having radius 7 cm and height 10 cm . Mud is poured at a rate of $220 \mathrm{~cm}^{3} / \mathrm{s}$ over it. Find the rate of change of its of height if radius is increasing at a rate of $0.2 \mathrm{~cm} / \mathrm{s}$.
7. Differentiate the following w.r.t ' x '.
(i) $y=2 \sin ^{3} t$
(ii) $y=\log (\sec x)+z^{2}$
(iii) $y=\sin \sqrt{x}$
8. Find $\frac{d y}{d x}$:
(i) $y=\sin 2 x \cdot \log 2 x$
(ii) $y=\frac{x^{2}+4 x+1}{x^{3}+x^{4}}$
(iii) $y=e^{x} \cdot \sin x$

6
9. Integrate to find ' y ':
(i) $\frac{d y}{d x}=(3 x+9)$
(ii) $\frac{d y}{d x}=\frac{1}{9 x+2}$
(iii) $\frac{d y}{d x}=\sqrt{2 x+1}$
(iv) $\frac{d y}{d x}=\sin (5 x+7)$
10. Integrate the following:
(i) $\int_{\pi / 8}^{\pi / 4} \sin (2 x) . d x$
(ii) $\int_{\mathrm{e}}^{\mathrm{e}^{2}} \frac{1}{2 \mathrm{x}} \mathrm{dx}$
(iii) $\int_{0}^{5}\left(x^{2}+4 x+1\right) d x$
(iv) $\int_{\log 2}^{\log 10} e^{4 x} \cdot d x$
11. Plot the following curves. Also tell what does their slope and area depict.
(i) $\mathrm{eV}_{0}=\mathrm{h} v-\mathrm{h} v_{0}$ between ' V_{0} ' and ' v '.
(ii) $\mathrm{S}=1 / 2 \mathrm{at}^{2}$ between ' s ' and ' t '.
(iii) $v=u+a t$ between ' v ' and ' t '.
(iv) $\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}$ between ' T ' and ' l '.

