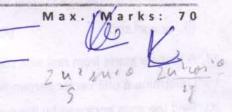
HALF YEARLY EXAMINATION


CLASS - XI

HAMDARD PUBLIC SCHOOL

TIME: 3 Hours

General Instructions

- 1. All questions are compulsory.
- 2. Q. No. 1 – 8 are very short answer types carrying 1 mark each.
- 3. Q. No. 9 - 15 are short answer types carrying 2 marks each.
- 4. Q. No. 16 - 26 are of short answer type carrying 3 marks each.
- Q. No. 27 29 are of short answer type carrying 5 marks each. 5.

PHYSICS

SECTION-A [1 MARK QUESTIONS]

- Distinguish between fundamental & derived units
- Which of the length measurement is most accurate & why?
- (ii) 0.000 5 cm
- (iii) 6.00 cm
- Two masses of ration 1: 2 are thrown vertically up with the same speed. Which mass will return to ground
- 4. The position of a particle is given by $x = 6 + 18t + 9t^2$ (x in metres and t in sec). Find the velocity at t = 2s.
- -5. If $|\vec{A} + \vec{B}| = |\vec{A} \vec{B}|$, what is the angle between \vec{A} and \vec{B} ?
- 6. What will be the effect on horizontal range & height of a projectile when its initial speed is doubled keeping its angle of projection same?
- 7. A unit vector is represented by $a\hat{i} + b\hat{j} + c\hat{k}$. If the values of 'a' and 'b' are 0.6 and 0.8 respectively, find the
- 8. The changes in a function y and the independent variable 'x' are related as function of x.

SECTION-B [2 MARKS QUESTIONS]

9. Find $\frac{dy}{dx}$ if $y = e^x \sin x$.

- 16. A jet airplane travelling at the speed of 500 km/h ejects its exhaust gases at a speed of 1500 km/h relative to the jet itself. What is the speed of gases w.r.t to ground?
- 11. Find the maximum & minimum values of the function $y = x + \frac{1}{2}$ for x > 0.00
- 12. If the percentage error in measurement of radius R of sphere is 0.2%, then calculate the percentage error in its volume.
- 13. A lady walking due east on a road with a speed of 10 m/s encounters rain falling vertically with velocity of 30 m/s. At What angle she should her umbrella to protect herself from rain?
- 14. The angle between \vec{A} and \vec{B} is 60° . What is the ratio of $\vec{A}.\vec{B}$ and $|\vec{A} \times \vec{B}|$.
- 15/A swimmer can swim with velocity of 10 km/h w.r.t the water flowing in a river with velocity of 5 km/h. In what direction should be swim to reach the point. If width of river in 1 km, find time taken to cross the river

asset PACE IIT / MEDICAL: Delhi / Bhiwadi / Mumbal / Akola / Lucknow / Kolkata / Nashik / Goa / Ralbarelily / Pune / Kota / Faridabad

(a)16) cuso

ACE IIT & MEDICAL

Military and an annual section

warn sour

ECTION-C [3 MARKS QUESTIONS]

- 16. The period of oscillation of a simple pendulum is $T = 2\pi\sqrt{L/g}$. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s. using a wrist watch of 1 s resolution. What is the accuracy in the determination of g?
- 1. Find the derivative of following functions w.r.t.x
 - (i) $y = x^2 \sin x$
- (ii) $y = \frac{\sin x}{x}$
- (iii) $y = \sin(x^2)$
- 18. A particle starts from rest with constant acceleration. Plot a t, v t & $s \hat{t}$ graphs for its motion.
- 19. Determine a unit vector perpendicular to both $\vec{A} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{B} = \hat{i} \hat{j} + 2\hat{k}$.
- 20 Find the area enclosed by the curve $y = \sin x$ and the x-axis between x = 0 and $x = \pi$
- 21. A physics quantity Q is given by $Q = \frac{A^2 B^{3/2}}{C^4 C^{1/2}}$. If percentage error in A, B, C & D is 1%, 2%, 4% and 2%. Find the percentage error in Q.
- 22. A balloon is ascending at a rate of 14 m/s at a height of 98 m above the ground when a packet is dropped from the balloon. After how much time and with what velocity does it reach the ground?
- Two parallel rail tracks run north-south. Train A moves north with a speed of 54 km h⁻¹, and train B moves south with a speed of 90 km h⁻¹. What is the (a) velocity of B with respect to A?, (b) velocity of ground with respect to B?, and (c) velocity of a monkey running on the roof of the train A against its motion (with a velocity of 18 km h⁻¹ with respect to the train A) as observed by a man standing on the ground?
- From the top of a building 19.6 m high, a ball is projected horizontally. After how long does it strike the ground? If the line joining the point where it hits the ground makes an angle 45° with the horizontal, what is the initial velocity of ball?
- 28. (a) Find the magnitude and direction of $\hat{i} + \hat{j} & \hat{i} \hat{j}$?
 - (b) What are the components of a vector $\vec{A} = 2\hat{i} + 3\hat{j}$ along $\hat{i} + \hat{j} & \hat{i} \hat{j}$?
- 26 The position of a particle is given by $\vec{r} = 3t\hat{i} 2t^2\hat{j} + 4\hat{k}$ m
 - (a) Find v and a of the particle.
 - (b) What is the magnitude & direction of \vec{v} at t = 2s?

To unbosen

SECTION-D [SMARKS QUESTIONS]

- 27/A body is projected with a velocity u at an angle θ with the horizontal. Derive relations for
 - (i) Path followed.
- (ii) Maximum height
- (iii) Time of flight
- (iv) Range
- (v) Final velocity

OR

Prove the following:

- (a) For two angle of projection θ and (90θ) with same velocity.
- (i) Range is same (ii) Heights are in ratio $tan^2 \theta$: 1.
- (b) If range and maximum height are same the angle of projection is tan-1(y).
- 28. Explain the parallelogram law of vector addition & derive an expression form magnitude and direction of resultant angle θ on a body simultaneously have a resultant F. Show that $\theta = \cos^{-1}((F^2 F_1^2 F_2^2)/2F_1F_2)$

OR

(a) Show that for a projectile the angle between the velocity and the x-axis as a function of time is given by

$$\theta = \tan^{-1} \left(\frac{v_y - gt}{v_x} \right)$$

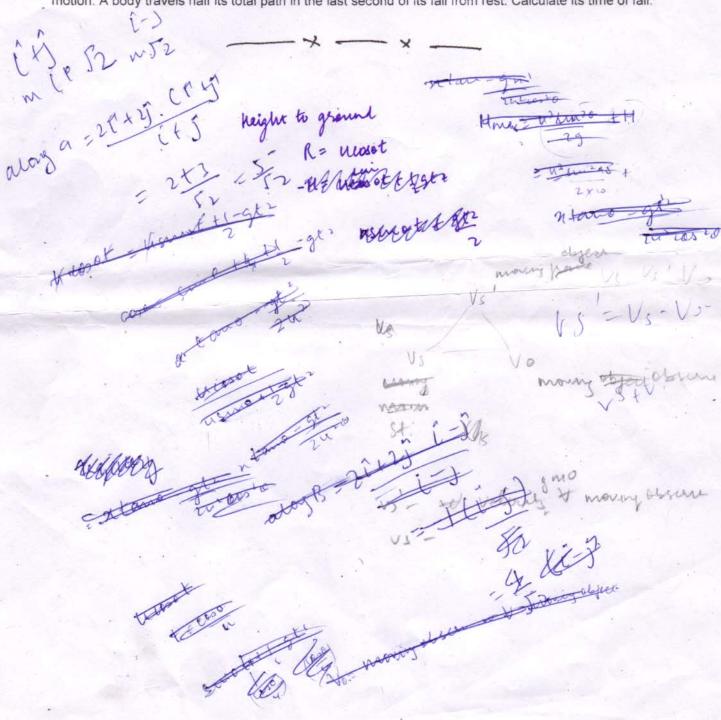
pareilly / Pune / Kota / Faridabad

white and the

PACE IIT / MEDICAL: Delhi / Bhiwadi / Mumbai / Akoia / Lucknow / Kolkata / Nashik / Goa / Raibareilly / Pune / Kota / Faridabad

(b) Show that he projection angle Qo for a projectile launched from the origin is given by

$$\theta_0 = \tan^{-1} \left(\frac{4h_m}{R} \right)$$


Where h_m = maximum height

R= horizontal range

29. Derive the 3 equations of motion by calculus method. Express conditions under which they can be used.

OR

Derive an equation for the distance travelled by a uniformly accelerated body in nth second of the last motion. A body travels half its total path in the last second of its fall from rest. Calculate its time of fall.

