Unit 13 (Playing With Numbers)

Multiple Choice Questions

Question. 1 Generalised form of a four-digit number abdc is
(a) 1000a + 100b + 10c + d (b) 1000a + 100c + 10b + d
(c) $1000 \mathrm{a}+100 \mathrm{~b}+10 \mathrm{~d}+\mathrm{c}$ (d) axbx c x d

Solution. (c) In generalised form, we express a number as the sum of the products of its digits with their respective place values.
abdc is written in generalised form as 1000a $+100 b+10 d+c$.
i.e. $a b d c=1000 a+100 b+10 d+c$

Question. 2 Generalised form of a two-digit number $x y$ is

(a) $x+y$ (b) $10 x+y$ (c) $10 x-y$ (d) $10 y+x$

Solution. (b) In generalised form, $x y$ can be written as the sum of the products of its digits with their respective place values, i.e. $x y=10 x+y$

Question. 3 The usual form of $1000 a+10 b+c$ is
(a) abc (b) abc0 (c) a0be (d) ab0c

Solution. (c) Given expanded (or generalised) form of a number is $1000 a+10 b+c$. Then, we have to find its usual form.

We can write it as $1000 \times a+100 \times 0+10 \times b+c$
i.e. a0bc, which is the usual form.

Question. 4 Let abc be a three-digit number. Then, abc - cba is not divisible by
(a) 9 (b) 11 (c) 18 (d) 33

Solution. (c) Given, abc is a three-digit number.
Then, $a b c=100 a+10 b+c$
and $c b a=100 c+10 b+a$
$a b c-e b a=(100 a+10 b+c)-(100 c+10 b+a)$
$=100 a-a+10 b-10 b+c-100=$
$=99 a-99 c=99(a-c)$
$=$ abc-cba is divisible by 99 .
=> abc - cba is divisible by $9,11,33$, but it is not divisible by 18 .

Question. 5 The sum of all the numbers formed by the digits x, y and z of the number $x y z$ is divisible by (a) 11 (b) 33 (c) 37 (d) 74
Solution. (c) We have, $x y z+y z x+z x y$
$=(100 x+10 y+z)+(100 y+10 z+x)+(100 z+10 x+y) \ldots$ (i)
$=100 x+10 x+x+10 y+100 y+y+z+100 z+10 z$
$=111 x+111 y+111 z=111(x+y+z)$
$=3 \times 37 \times(x+y+z)$
Hence, Eq. (i) is divisible by 37 , but not divisible by 11,33 and 74 .

Question. 6 A four-digit number aabb is divisible by 55. Then, possible value(s) of b is/are (a) 0 and 2 (b) 2 and 5 (c) 0 and 5 (d) 7

Solution. (c) It is given that, aabb is divisible by 55 . Then, it is also divisible by 5 .
Now, if a number is divisible by 5 , then its unit digit is either 0 or 5 .
Hence, the possible values of b are 0 and 5 .

Question. 7 Let abc be a three-digit number. Then, $a b c+b c a+c a b$ is not divisible by
(a) $a+b+c$
(b) 3 (c) 37 (d)

Solution. (d) We know that, the sum of three-digit numbers taken in cyclic order can be written as $111(a+b+c)$.
i.e. $a b c+$ pea $+c a b=3 \times 37 \times(a+b+c)$

Hence, the sum is divisible by 3,37 and $(a+b+c)$ but not divisible by 9 .

Question. 8 A four-digit number 4 ob 5 is divisible by 55 . Then, the value of b -a is
(a) 0 (b) 1 (0 4 (d) 5

Solution. (b) Given, a four-digit number 4ab5 is divisible by 55 . Then, it is also divisible by 11.
The difference of sum of its digits in odd places and sum of its digits in even places is either 0 or multiple of 11 .
i.e. $(4+b)-(a+5)$ is 0 or a multiple of 11 , if $4+b-a-5=0=>b-a=1$

Question. 9 If abc is a three-digit number, then number abc -a-b-c is divisible by
(a) 9 (b) 90 (c)10 (d) 11

Solution. (d) We have, $a b c=100 a+10 b+c$
$\therefore a b c-a-b-c=(100 a+10 b+c)-a-b-c=100 a-a+10 b-b=99 a+9 b=9(11 a+b)$
Hence, the given number $a b c-a-b-c$ is divisible by 9 .

Question. 10 A six-digit number is formed by repeating a three-digit number. For example, 256256,678678 etc. Any number of this form is divisible by (a) 7 only (b) 11 only (c) 13 only (d) 1001

Solution.
(d) Let the six-digit number be abcabc, then

$$
\begin{aligned}
& =100000 \times a+10000 b+1000 c+100 a+10 b+c \\
& =a(100000+100)+b(10000+10)+c(1000+1) \\
& =a(100100)+b(10010)+c(1001)=1001(a \times 100+b \times 10+c)
\end{aligned}
$$

Hence, it is divisible by 1001 .

Question. 11 If the sum of digits of a number is divisible by three, then the number is always divisible by (a) 2 (b) 3 (c) 6 (d) 9
Solution. (b) We know that, if sum of digits of a number is divisible by three, then the number must be divisible by 3 , i.e. the remainder obtained by dividing the number by 3 is same as the

Question. 12 If $x+y+z=6$ and z is an odd digit, then the three-digit number $x y z$ is
(a) an odd multiple of 3 (b) an odd multiple of 6
(c) an even multiple of 3 (d) an even multiple of 9

Solution. (a) We have, $x+y+z=6$ and z is an odd digit. Since, sum of the digits is divisible by 3 , it will also be divisible by 2 and 3 but unit digit is odd, so it is divisible by 3 only. Hence, the number is an odd multiple of 3 .

Question. 13 If $5 A+53=65$, then the values of A and B is
(a) $\mathrm{A}=2,8=3$ (b) $\mathrm{A}=3,8=2$ (c) $\mathrm{A}=2,8=1$ (d) $\mathrm{A}=1,8=2$

Solution.
(c) We have, $\frac{5 A+B 3}{65}$

Evidently, $A+3$ is a number taking values from 3 to 12 . So, either $A+3$ is 5 or it is a two-digit number whose unit digit is 5 . But, $A+3$ is less than or equal to 12 .
$\therefore \quad A+3=5 \Rightarrow A=2$
In the tens column, we have $5+B=6 \Rightarrow B=1$
Hence, $A=2$ and $B=1$

Question. 14 If $A 3+8 B=150$, then the value of $A+B$ is
(a) 13 (b) 12 (c) 17 (d) 15

Solution. (a) We have, $A 3+8 B=150$
Here, $3+B=0$, so $3+B$ is a two-digit number whose unit's digit is zero.
$\therefore 3+B=10=>B=7$
: Now, considering ten's column, $\mathrm{A}+8+1=15$
$=A+9=15$
=> $A=6$
Hence, $A+B=6+7=13$

Question. 15 If $5 A \times A=399$, then the value of A is
(a) 3 (b) 6 (c) 7 (d) 9

Solution. (c) We have, 5A $\times \mathrm{A}=399$
Here, $A \times A=9$ i.e. $A \times A$ is the number 9 or a number whose unit's digit is 9 . Thus, the number whose product with itself produces a two-digit number having its unit's digit as 9 is 7 .
i.e. $A \times A=49=>A=7$

Now, $5 \times \mathrm{A}+4=39$
$=>5 \times 7+4=39$
So, A satisfies the product.
Hence, the value of A is 7 .

Question. 16 If $6 \mathrm{~A} \times \mathrm{B}=>488$, then the value of $A-B$ is
(a)-2 (b) 2 (c) -3 (d) 3

Solution. (c) Given, $6 \mathrm{~A} \times \mathrm{B}=\mathrm{A} 86$
Let us assume, $A=1$ and $S=3$ Then, LHS $=61 \times 3=183$ and RHS $=183$ Thus, our
assumption is true.
A-6 $=1-3=-2$

Question. 17 Which of the following numbers is divisible by 99 ?
(a) 913462
(b) 114345
(c) 135792
(d) 3572406

Solution. (b) Given a number is divisible by 99.
Now, going through the options, we observe that the number (b) is divisible by 9 and 11 both as the sum of digits of the number is divisible by 9 and sum of digits at odd places $=$ sum of digits at even places.

Fill in the Blanks

In questions 18 to 33 , fill in the blanks to make the statements true.
Question. 183134673 is divisible by 3 and-----.
Solution. 9
3134673 is divisible by 3 and 9 as sum of the digits, $3+1+3+4+6+7+3=27$ is divisible by both 3 and 9.

Question. 1920×3 is a multiple of 3 , if the digit x is --- or --- or ---- .
Solution. 1,4,7
We know that, if a number is a multiple of 3 , then the sum of its digits is again a multiple of 3 ,
i.e. $2+0+x+3$ is a multiple of 3 .
$x+5=0,3,6,9,12,15$ But, x is a digit of the number 20×3.
x can take values $0,1,2,3, \ldots \ldots . .9$.
=> $x+5=6$ or 9 or 12
Hence, $x=1$ or4 or 7

Question. 203×5 is divisible by 9 , if the digit x is----.
Solution. 1
Since, the number 3×5 is divisible by 9 , then the sum of its digits is also divisible by 9 . i.e. $3+$ $x+5$ is divisible by 9 .
=>x + 8 can take values $9,18,27, \ldots$
But x is a digit of the number 3×5, so $x=1$.

Question. 21 The sum of a two-digit number and the number obtained by reversing the digits is always divisible by----.
Solution. 11
Let ab be any two-digit number, then the number obtained by reversing its digits is ba.
Now, $a b+b a=(10 a+b)+(10 b+a)=11 a+11 b=11(a+b)$
Hence, $a b+b a$ is always divisible by 11 and $(a+b)$.

Question. 22 The difference of two-digit number and the number obtained by reversing its digits is always divisible by ----

Solution. 9

Let ab be any two-digit number, then we have
$a b-b a=(10 a+b)-(10 b+a)$
$=9 a-9 b=9(a-b)$
Hence, $a b-b a$ is always divisible by 9 and ($a-b$).

Question. 23 The difference of three-digit number and the number obtained by putting the digits in reverse order is always divisible by 9 and---.
Solution. 11
Let abc be a three-digit number, then we have
$a b c-c b a=(100 a+10 b+c)-(100 c+10 b+a) ;=(100 a-a)+(c-10 C c)$
$=99 a-99 c=99(a-c)$
$=9 \times 11 \times(a-c)$
Hence, abc - cba is always divisible by 9,11 and ($a-c$).

Question. 24
$2 B$
If $\frac{+A B}{8 A}$, then $A=$ \qquad and $B=$ \qquad .

Solution.

6, 3

$2 B$
We have, $\frac{+A B}{8 A}$
Here, B can take values from 0 to 9 .
For $B=0, A=0$, which does not fit in tens column
For $B=1, A=2$, which does not fit in tens column
For $B=3, A=6$, which satisfies the tens column.
Hence, $A=6$ and $B=3$

Question. 25
$A B$
If $\frac{\times B}{96}$, then $A=$ \qquad and $B=$ \qquad .

Solution.

2, 4

$$
A B
$$

We have, $\times B$

$$
96
$$

Here $B \times B=6$, therefore B can take values either 4 or 6 .
For $\quad B=4, A \times B+1=9$
$\Rightarrow A \times 4+1=9 \Rightarrow A=2$
Hence, $\quad A=2, B=4$

Question. 26

B 1
If $\frac{\times \quad B}{49 B}$, then $B=$ \qquad .

Solution.
7
We have, $\frac{\times B}{49 B}$
Here, B can take values fron
$B \times B=49$ is not satisfied.
Hence, $\quad B=7$

Question. 271×35 is divisible by 9 , if $x=---$.
Solution.
0 '
If $1 x 35$ is divisible by 9 , then the sum of its digits is also divisible by 9 .
i.e. $1+x+3+5$ is divisible by 9 .
$\Rightarrow 9+x$ can take values $0,9,18,27, \ldots$
$\Rightarrow 9+x=9$ or $18 \quad[\because x$ is a digit]
$\Rightarrow \quad x=0$ or 9

Question. 28 A four-digit number abed is divisible by 11 , if $\mathrm{d}+\mathrm{b}=---$ or-----.
Solution. $a+c, 12(a+c)$
We know that, a number is divisible by 11 , if the difference between the sum of digits at odd places and the sum of its digits at even places is either 0 or a multiple of 11

Hence, abcd is divisible by 11 , if $(d+b)-(a+c)=0,11,22,33$,...
$=>d+b=a+c$ or $d+b=12(a+c)$

Question. 29 A number is divisible by 11, if the differences between the sum of digits at its odd places and that of digits at the even places is either 0 or divisible by - ----
Solution. 11
By test of divisibility by 1,1 , we know that, a number is divisible by 11 , if the sum of digits at odd places and even places are equal or differ by a number, which is divisible by 11.

Question. 30 If o three-digit number abc is divisible by 11, then---is either 0 or multiple of 11.

Solution. (a+c)-b
Since, abc is divisible by 11 , the difference of sum of its digits at odd places and that of even places is either zero or multiple of 11, i.e. $(a+c)-b$ is either zero or multiple of 11 .

Question. 31 If $\mathrm{A} \times 3=\mathrm{IA}$ then $\mathrm{A}=----$.
Solution.
5
A
We have, $\frac{\times 3}{1 A}$
Here, $3 \times A$ is a two-digit number whose unit digit is A.
A can take any value between 0 to 9 , but only $A=5$ satisfies the product.
Hence, $\quad A=5$

Question. 32 If $B \times B=A B$, then either $A=2, B=5$ or $A=----B=---$.
Solution.

3, 6

B
Given, $\frac{\times B}{A B}$
Here, $B \times B$ is a two-digit number, whose unit digit is B, therefore the value of B is either 5 or 6.

If $B=5$, then $A=2$ and if $B \equiv 6$ then $A \neq 3$

Question. 33 If the digit 1 is placed after a two-digit number whose ten's is t and one's digit is u, the new number is-----
Solution. tu1
Given, a two-digit number whose ones digit isu in and tens digit isu. If the digit 1 is placed after this number, then the next number will be tu1.

True/False

In questions 34 to 44, state whether the given statements are True or False.
Question. 34 A two-digit number $a b$ is always divisible by 2 , if b is an even number.
Solution. True
By the test of divisibility by 2 , we know that a number is divisible by 2 , if its unit's digit is even.

Question. 35 A three-digit number abc is divisible by 5 , if c is an even number.
Solution. False
By the test of divisibility by 5 , we know that if a number is divisible by 5 , then its one's digit will be either 0 or 5 , i.e. the numbers ending with the digits 0 or 5 are divisible by 5 .

Question. 36 A four-digit mmbeFabcd is divisible by 4 , if ab is divisible by 4.
Solution. False
As we know that, if a number is divisible by 4 , then the number formed by its digits in unit's and ten's place is divisible by 4 .

Question. 37 A three-digit number $a b c$ is divisible by 6 , if c is an even number and $a+b+c$ is a multiple of 3 .
Solution. True
If a number is divisible by 6 , then it is divisible by both 2 and 3 . Since, abc is divisible by 6 , it is also divisible by 2 and 3 . Therefore, c is an even number and the sum of digits is divisible by 3 , i.e. multiple of 3 .

Question. 38 Number of the form $3 \mathrm{~N}+2$ will leave remainder 2 when divided by 3 .
Solution. True
Let $x=3 N+2$. Then, it can be written as.
$x=($ a multiple of 3$)+2$
i.e. x is a number which is 2 more than a multiple of 3
i.e. x is a number, which when divided by 3 , leaves the remainder 2 .

Question. 39 Number 7N+1 will leave remainder 1 when divided by 7.
Solution. True
Given, a number of the form $7 \mathrm{~N}+1=x$ (say)
Here, we observe that * is a number which is one more than a multiple of 7 . i.e. when x is divided by 7 , it leaves the remainder 1 .

Question. 40 If a number a is divisible by b, then it must be divisible by each factor of b.
Solution. True
Given, a is divisible by b.
Let $\mathrm{b}=\mathrm{p} 1 \cdot \mathrm{p} 2$, where p 1 and p 2 are primes.
Since, a is divisible by b, a is a multiple of b
i.e. $a=m b$
=> a = m.p1.p2
or $a=c p 2=d p 1$, where $\mathrm{c}=\mathrm{mp1} 1, \mathrm{~d}=\mathrm{mp} 2$
=>a is a multiple of p1 as well as p2.
Hence, a is divisible by each factor b.

Question. 41 If $\mathrm{AB} \times 4=192$, then $\mathrm{A}+6=7$.
Solution.

False

A B
We have, $\frac{\times \quad 4}{\underline{192}}$
Here, $B \times 4$ is a two-digit number whose unit's digit is 2 .
Therefore, the value of B is either 3 or 8 .
But $B=3$ is not possible as $A \times 4+1 \neq 19$ for any value of A between 0 to 9
$\therefore \quad B=8$ and then $A=4$
Hence, $A+B=12$

Question. 42 If $\mathrm{AB}+7 \mathrm{C}=102$, where $B \neq 0, C \neq 0$, then $\mathrm{A}+\mathrm{B}+\mathrm{C}=14$.
Solution.

True

AB
We have, $\frac{+7 C}{102}$
Here, $B+C$ is either 2 or a two-digit number whose one's digit is 2 .
If $\mathrm{B}=\mathrm{C}=1$, If $8=5, \mathrm{C}=7, \mathrm{~A}=2$ and $\mathrm{A}+\mathrm{B}+\mathrm{C}=2+5+7=14$

Question. 43 If 213×27 is divisible by 9 , then the value of x is 0 .
Solution. False
Given, 213×27 is divisible by 9 , so sum of its digits is also divisible by 9 .
i.e. $21+3+x+2+7-0,9,18,27,36, \ldots$
$\Rightarrow x+15=0,9,18,27,36, \ldots$
$\Rightarrow>+15=18$ [x is a digit of a number]
=> $x=3$

Question. 44 In $\mathbf{N}+5$ leaves remainder 3 and $N \div 2$ leaves remainder 0 , then $N \div 10$ leaves remainder 4.
Solution.

False

$\because N+5$ leaves remainder 3 .
$\Rightarrow N=5 n+3$, where $n=0,1,2,3, \ldots$
Now, it is also given, $N+2$ leaves remainder 0 .
So, N must be an even number.
But $N=5 n+3$ i.e. sum of two terms whose second term is odd.
So, for N should be even it is necessary that $5 n$ must be odd.
which is possible, when $n=1,3,5, \ldots$
So, in this case value of N should be

$$
N=8,18,28,38, \ldots
$$

i.e.

$$
N=10 n+8, n=Q 1,2,3, \ldots
$$

When $N \div 10$ leaves remainder 8 always.

Question. 45 Find the least value that must be given to number a, so that the number 91876 a 2 is divisible by 8.
Solution. Given, $91876 a 2$ is divisible by 8.
Since, we know that, if a number is divisible by 8 , then the number formed by last 3 digits is
divisible by 8.
So, 6 a 2 is divisible by 8 .
Here, a can take values from 0 to 9 .
For $a=0,602$ is not divisible by 8 .
For $\mathrm{a}=1,612$, which is not divisible by 8 .
For $\mathrm{a}=3,632$ is divisible by 8 .
Hence, the minimum value of a is 3 to make 91876 a2 divisible by 8 .

Question. 46
$1 P$
If $\frac{\times P}{Q \quad 6}$, where $Q-P=3$, then find the values of P and Q.

Solution.

$1 P$
We. have, $\frac{\times P}{Q 6}$ and $Q-P=3$
Here, $P \times P$ is 6 , so the value of P is either 4 or 6 .
But if $P=4, Q=5$, which does not satisty the relation $Q-P=3$.
Hence, $P=6$ and then $Q=9$.

Question. 47 If $1 A B+C C A=697$ and there is no carry-over in addition, find the value of $A+B$ + C.

Solution.
$1 A B$
We have, $\frac{+C C A}{697}$
Since, there is no carry-over in addition,

$$
\begin{array}{lrl}
& 1+C=6 \\
\Rightarrow & C=5 \\
\Rightarrow & A+C=9 \\
\Rightarrow & A+5=9 \\
\text { and } & A=4 \\
& B+A=7 \\
\Rightarrow & B+4=7 \\
\Rightarrow & B+B+C=4+3+5=12
\end{array}
$$

Question. 48 A five-digit number AABAA is divisible by 33. Write all the numbers of this form. Solution. Given, a number of the form AABAA is divisible by 33 . Then, it is also divisible by 3
and
11 , as if a number a is divisible by b, then it is also divisible by each factor of b.
Since, AABAA is divisible by 3 , sum its digits is also divisible by 3. i.e. $4+4+8+A+.4=0,3$,
6,9...
or $4 / 4+8=0,3,69, \ldots \ldots$ (i)
From Eq. (i), we have
Further, the given number is also divisible by 11 , therefore $(2 / 4+8)-2 A=0,11,22, \ldots$
$B=Q 11,22$,...
$8=0$ [v 8 is a digit of the given number]
$4 / 4=12$ or 24 or $36 A=3,69$
Hence, the required numbers are 33033, 66066 and 99099.

In questions 49 to 60, find the value of the letters in each of the following questions.
Question. 49
$\begin{array}{r}A A \\ +A A \\ \hline X A Z\end{array}$
Solution.
A A
We have, $\frac{+A \quad A}{X A \quad Z}$
Here $A+A=Z$, therefore A can take any value between 0 to 9 .
Since, the sum in second column is a two-digit number, the possible values of A are 5 to 9 .
The values $A=5$ to 8 are not fitted in second column.
Hence, $A=9 \Rightarrow Z=8$ and $X=1$

Question. 50	
8	5
+4	A
$B C$	3

Solution.

85
We have, $\frac{+4 \quad A}{B C 3}$
Here, $5+A=3 \Rightarrow 5+A$ can be a single-digit number.
So, $5+A$ is a two-digit number whose one's digit is 3 .
$\therefore \quad A=8$
$\Rightarrow \quad B=1, C=3 \quad[\because B C=8+4+1 \Rightarrow 10 B+C=13=10 \times 1+3 \Rightarrow B=1, C=3]$

Question. 51
B 6

$+8 \quad A$
$C A 2$

Solution.
B 6
We have, $\begin{aligned} & +8 \\ & C A 2\end{aligned}$
Here, $6+A=2$, therefore the possible value of A is 6 .
Now,
$C A=B+8+1$
\Rightarrow $C 6=B+9$
i.e. $B+9$ is a number whose one's digit is 6 .

Therefore, $B=7$ and $C=1$

Question. 52
$1 B A$
$A B \quad A$
$+A B \quad 2$

Solution.

$$
1 B A
$$

We have, $\frac{+A B A}{8 B 2}$
Here, $A+A$ is a number whose one's digit is 2 , therefore $A=6$.
Now, $B+B+1=B$
So, the possible value of B is 9 .
Again, in third column,

```
        \(A+1+1=8\)
\(\Rightarrow \quad A=6\), which is true.
Hence, \(\quad A=6\) and \(B=9\)
```

Question. 53
$C B A$

$C B \quad A$
$+A 30$

Solution.

We have, | C | B | A |
| ---: | ---: | ---: |
| + | B | A |
| $1 A$ | 3 | 0 |

In first column, $A+A=0$
$\Rightarrow \quad A=0$ or 5
For $A=0$, the second and third column, sums are not satisfied.
So, $A=5$
Now, in second column,

$$
B+B+1=3
$$

For $B=1$, third column sum is not satisfied.
So, $B=6$
Again, in third column, $C+C+1=1 A$

```
\(\Rightarrow \quad C+C=15-1 \Rightarrow 2 C=14\)
\(\Rightarrow \quad C=7\)
```

Hence, $A=5, B=6$ and $C=7$

Question. 54
$B \quad A \quad A$
$B A \quad A$
$+B A 8$
Solution.
$B A A$
We have, $\frac{+B A A}{3 A 8}$
Here, $A+A=8$
$\Rightarrow \quad A=9 \quad[\because$ rejecting $A=4$ as $A+A$ can not be a single digit number $]$
Now, in third column, we have $B+B+1=3$
$\Rightarrow \quad 2 B=2 \Rightarrow B=1$
Hence, $A=9$ and $B=1$

Question. 55
A. 01 B

A	0	A
+1	B	
B	1	0

Solution.

We have, | A | 0 | 1 | B |
| ---: | ---: | ---: | ---: |
| +1 | 0 | A | B |
| B | 1 | 0 | 8 |

In first. column, $B+B=8$
$\Rightarrow \quad B=9$
$[\because B=4$ does not fit in fourth column $]$
In second column, we have

$$
A+1+1=0
$$

So, A should be 8 .
Third column is true for these values.
Also, the fourth column is satisfied.
Hence, $A=8$ and $B=9$

Question. 56

Solution.

We have, | A |
| :---: |
| $\times \quad 6$ | and $B-A=1$

Here, $6 \times B$ is a number, whose unit's digit is 8 . Therefore, the possible values of B are 3 and 8 .
If $B=3$, then $A \times 6+1=C 6$ which is not possible for any value of A between 0 to 9 .
$\therefore B=8$ and then $A=7$
The values of A and B also satisfies the given condition i.e $8-7=1$.
$\begin{array}{rlrl}\text { If } A=7, & \text { then } 7 \times 6+4 & =C 6 \\ & & & \\ & & & =C 6 \\ & \text { Hence, } & C & =4 \\ & & A & =7, B=8 \text { and } C=4\end{array}$

Question. 57
$\begin{array}{r}A B \\ \times A B \\ \hline 6 A B \\ \hline\end{array}$
Solution.

$$
A B
$$

Given, $\frac{\times A B}{6 A B}$
i.e.

$$
\begin{equation*}
A B \times A B=6 A B \tag{i}
\end{equation*}
$$

Here, $B \times B$ is a number whose unit's digit is B. Therefore, $B=1$ or 5

$$
[\because B \neq 0 \text {, else } A B \times A+\neq 6 A]
$$

Again,

$$
A B \times A B=6 A B
$$

\Rightarrow The square of a two-digit number is a three-digit number.
So, A can take values 1, 2 and 3 .
For $A=1,2,3$ and $B=1$, Eq. (i) is not satisfied.
Now, for $A=1, B=5$, Eq. (i) is not satisfied.
We find that $A=2, B=5$ satisfies the Eq. (i).
Hence, $\quad A=2, B=5$

Question. 58

A	A
\times	A
C	A

Solution.
A A
Given, $\begin{array}{r}\times \quad A \\ \hline C A B \\ \hline\end{array}$
Here, $A A \times A$ is a three-digit number, whose unit's digit is B, therefore A can take values from 4 to 9 as $A=0,1,2,3$ give a single digit or a two-digit number. Further, since ten's digit of the product is A itself. So, A cannot take values $4,5,6,7$ and 8 .
Hence, $A=9$ and then $B=1, C=8$.

$A B$
$-B \quad 7$
$4 \quad 5$

Solution.

- $A B$

Given, $\frac{-B \quad 7}{4 \quad 5}$
In the ones column,

Clearly, \quad| $B-7$ | $=5$ |
| ---: | :--- |
| $12-7$ | $=5$ so $B=2$ |

Question. 60

$8 A B C$
$-A B C 5$
$D 4888$

Solution.

Given, | 8 | A | B | C |
| ---: | ---: | ---: | ---: |
| $-A$ | B | C | 5 |
| D | 4 | 8 | 8 |

In the ones column, $\mathrm{C}-5=8$
Obviously, $13-5=8$, so $C=3$
In the ten's column, $B-(C+1)=8$

$$
\begin{array}{ll}
\Rightarrow & B=8+C+1 \\
\Rightarrow & B=8+3+1 \\
\Rightarrow & B=12 \text { i.e. } B=2 \\
\text { In the hundred's column, } A-(B+1)=4 \\
\Rightarrow & A=4+B+1 \\
\Rightarrow & A=4+2+1=7
\end{array}
$$

In the thousand's column, 8-A = D

$$
\begin{array}{lr}
\Rightarrow & 8-7=D \\
\Rightarrow & D=1 \\
\text { Hence, } A=7, B=2, C=3 \text { and } D=1
\end{array}
$$

Question. 61 If $27 \div A=33$, then find the value of A

Solution. We observe that, 4×3 can never be a single digit number 2 , so 4×3 must be a twodigit number, whose ten's digit is 2 and unit's digit is the number less than or equal to 4 .
Therefore, the value of 4 can be 9 , as the values of 4 from 1 to 8 do not fit.

Question. 62212×5 is a multiple of 3 and 11 . Find the value of x.
Solution. Since, 212×5 is a multiple of 3 ,

```
2+1 + 2 +x+5 = 0, 3, 6,9,12,15,18,
=> 10 +x = 0, 3, 6,
=> x =2, 5, 8 ...(i)
Again, 212x5 is a multiple of 11, (2+2+5)-(1+x)=0,11,22,33
=> 8-x=0,11,22..
=> x = 8 ...(ii)
From Eqs. (i) and (ii), we have'
x = 8
```

Question. 63 Find the value of k, where 31 K 2 is divisible by 6 .

Solution. Given, 31 k 2 is divisible by 6 . Then, it is also divisible by 2 and 3 both.
Now, 31 K 2 is divisible by 3 , sum of its digits is a multiple of 3 .
i.e. $3+1+k+2=0,3,6,9,12$,...
$\Rightarrow+k+6=0,3,6,9,12$
=> $k=0$ or $3,6,9$

Question. 64 1y3y6is divisible by 11. Find the value of y.
Solution. It is given that, 1 y 3 y 6 is divisible by 11 .
Then, we have $(1+3+6)-(y+y)=0,11,22, \ldots$
=> $10-2 y=0,11,22$,...
$\Rightarrow 10-2 y=0$ [other values give a negative number]
=> $2 y=10$
$\Rightarrow>=5$

Question. $65756 x$ is a multiple of 11 , find the value of x.
Solution. We are given that, $756 x$ is a multiple of 11 . Then, we have to find the value of x.
Since, $756 x$ is divisible by 11 , then $(7+6)-(5+x)$ is a multiple of 11 ,
i.e. $8-x=0,11,22, \ldots$
=> $8-x=0$
=> $x=8$

Question. 66 A three-digits number 203 is added to the number 326 to give a three-digits number 5 b 9 Which is divisible by 9 . Find the value of $\mathrm{b}-\mathrm{a}$.
Solution.

$$
2 \text { a } 3
$$

Given, $\frac{+326}{5 \quad b 9}$
We see that,
In one's column, 3+6=9 (true)
In third column, $2+3=5$ (true)
$\therefore a+2$ is a single digit number b as there is no carry-over in the addition.
Thus,

$$
a+2=b \Rightarrow b-a=2
$$

Question. 67 Let $E=3, B=7$ and $A=4$. Find the other digits in the sum

$B A S E$
$+B A L L$
$G M E S$

Solution.

Given, | B AS |
| :--- |
| $+B$ A L |
| $G A M E S$ |,$E=3, B=7$ and $A=4$

Now, \begin{tabular}{l}
+

\hline

7 \& 4 \& L \& L

\hline
\end{tabular}

In one's column, we have $3+L=S$ or $S-L=3$
In ten's column, we have $S+L=3$
On solving Eqs. (i) and (ii), we get.

$$
S=3 \text { and } L=0
$$

In hundred's column, we have

and in thousand's column, we have

$$
\begin{array}{lrl}
7+7 & =G 4 \\
14 & =G 4 \\
\therefore & G & =1 \\
\text { Hence } L=O, S=3, M=8 \text { and } G=1 &
\end{array}
$$

Question. 68 Let $\mathrm{D}=3, \mathrm{~L}=7$ and $\mathrm{A}=8$. Find the other digits in the sum

| M | $A D$ |
| ---: | ---: | ---: |
| + | $A S$ |
| + | A |
| $B U L$ | L |

Solution. In the first column, we have
$3+S+8$, which is definitely a two digits number whose unit's digit is 7 .
S must be 6 .
Now, in second column, 2A $+1=16+1=7$ [1 is carry forward]
In third column, $\mathrm{M}+1$ is a 2 digit number, therefore M must be 9 .
Then, $\mathrm{M}+1=9+1=106=1, U=0$
Hence, $S=6, M=9,6=1$ and $U=0$

Question. 69 If from a two-digit number, we subtract the number formed by reversing its digits then the result so obtained is a perfect cube. How many such numbers are possible? Write all of them.
Solution. Let ab be any two-digit number. Then, the digit formed by reversing it digits is ba.
Now, ab-ba = (10a+b)-(10b +a)
$=(10 a-a)+(b-10 b)$
$=9 a-9 b=9(a-b)$
Further, since ab-ba is a perfect cube and is a multiple of 9 .
\therefore The possible value of $a-b$ is 3 .
i.e. $a=b+3$

Here, b can take value from 0 to 6 .
Hence, possible numbers are as follow.
For $b=0, a=3$, i.e. 30
For $b=1, a=4$, i.e. 41
For $b=2, a=5$, i.e. 52
For $b=3, a=6$, i.e. 63
For $b=4, a=7$, i.e. 74
For $b=5, a=8$, i.e. 85
For $b=6, a=9$, i.e. 96

Question. 70 Work out the following multiplication.
\qquad
Use the result to answer the following questions.
(a) What will be 12345679×45 ?
(b) What will be 12345679×63 ?
(c) By what number should 12345679 be multiplied to get 888888888 ?
(d) By what number should 12345679 be multiplied to get 999999999 ?

Solution.

$$
12345679
$$

We have, $\frac{\times \quad 9}{\underline{111111111}}$
Here, we observe that in the product all the digits are same i.e. 1 , which is actually the unit digit of the product 9×9. Also, total of digits in the multiplier is 90°.

12345679

(a) We have to compute, $\frac{x \quad 45}{}$

Here, multiplier is 45 whose sum of digits is 9 .
Thus, by conjecture we conclude that the product consists of digits 5 only as unit's digit of 9×5 is 5

\therefore	12345679 $\times \quad 45$ 555555555

(b) We have to compute the value of 12345679×63.

Here, sum of the digits of the multiplier is 9 and unit's digit of the product is 9 and unit's digit of the products of 3×9 is 7 .
$\therefore \quad 12345679 \times 63=777777777$
(c) We have to obtain the number 8 in the product, we should multiply the given number 12345679 by 72 as sum of its digits is 9 and 2×9 has only digit as 8 .
(d) To get the number 9 in the product we have to find out a two-digit number whose sum of digits is 9 and the product of its unit's digit with the unit's digit of the given number is 9 , such number is 81 .

Question. 71 Find the value of the letters in each of the following.
(i) $\begin{array}{r}P Q \\ \times \quad 6 \\ \hline Q Q Q \\ \hline\end{array}$
(ii) $\begin{aligned} & L M 1 \\ & M 18\end{aligned}$

Solution.

P Q
(i) We have, $\frac{\times \quad 6}{Q Q Q}$

Here, in first column, we see that $6 \times Q P=Q$. Therefore, the possible values of Q are 2, 4, 6 and 8
For $Q=2,6 \times P+1$ can not be equal to 22 for any value of P.
So, $Q=2$ is not possible.

\therefore		Q	$=4$
\Rightarrow		$6 \times P+2$	$=44$
\Rightarrow		$6 P=42$	
\Rightarrow		P	$=7$

(ii) We have, $+\frac{L M 1}{M 18}$

In first column, Clearly, In second column, \Rightarrow
$M+1=8$ $M=7$
$L+M=$
$L+7=1$
\therefore The value of L can be 4 .
In third column,

$$
2+L+1=M
$$

$$
\cdots-2+4+1=7
$$

$\Rightarrow 7=7$, so the third column is satisfied for $L=4, M=7$.
Hence, $L=4$ and $M=7$

Question. 72 If 148101 B 095 is divisible by 33 , find the value of B.
Solution. Given that the number 148101 S095 is divisible by 33 , therefore it is also divisible by 3 and 11 both.
Now, the number is divisible by 3 , its sum of digits is a multiple of 3 . i.e. $1+4+8+1+0+1+B+$ $0+9+5$ is a multiple of 3 .
$29+B=0,3,6,9, \ldots$
=> B=1,4,7 ...(i)
Also, given number is divisible by 11 , therefore
$(1+8+0+B+9)-(4+1+1+0+5)=0,11,22, \ldots$
$=>(18+B)-11=0,11,22$
$B+7=0,11,22$
=> B+7 = 11 => B = 4 ...(ii)
From Eqs. (i) and (ii), we have $B=4$

Question. 73 If 123123A4 is divisible by 11, find the value of A.
Solution. Given, 12312344 is divisible by 11 , then we have $(1+3+2+4)-(2+1+3+4)$ is a multiple of 11 .
i.e. $(6+4)-10=0,11,22 \ldots .$.
=> $A-4=0,11,22$.
=> $A-4=0$ [A is a digit of the given number]
=> $A=4$

Question. 74 If $56 \times 32 y$ is divisible by 18 , find the least value of y.
Solution. It is given that, the number $56 \times 32 \mathrm{y}$ is divisible by 18 . Then, it is also divisible by each factor of 18 .

Thus, it is divisible by 2 as well as 3 .
Now, the number is divisible by-2, its unit's digit must be an even number that is $0,2,4,6$,
Therefore, the least value of y is 0 .
Again, the number is divisible by 3 also, sum of its digits is a multiple of 3. i.e. $5+6+x+3+2$
$+y$ is a multiple of 3
$=>16+x+y=0,3,6,9, \ldots$
$\Rightarrow 16+x=18$
$=>x=2$, which is the least value of x.

