Exercise 8.1 Page: 146

1. The angles of quadrilateral are in the ratio $3: 5: 9: 13$.

Find all the angles of the quadrilateral.
Solution:
Let the common ratio between the angles be $=x$.
We know that the sum of the interior angles of the quadrilateral $=360^{\circ}$
Now,
$3 x+5 x+9 x+13 x=360^{\circ}$
$\Rightarrow 30 x=360^{\circ}$
$\Rightarrow x=12^{\circ}$
, Angles of the quadrilateral are:
$3 x=3 \times 12^{\circ}=36^{\circ}$
$5 x=5 \times 12^{\circ}=60^{\circ}$
$9 x=9 \times 12^{\circ}=108^{\circ}$
$13 x=13 \times 12^{\circ}=156^{\circ}$
2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.
Solution:

Given that,
$A C=B D$
To show that, $A B C D$ is a rectangle if the diagonals of a parallelogram are equal
To show ABCD is a rectangle we have to prove that one of its interior angles is right angled.
Proof,
In $\triangle A B C$ and $\triangle B A D$,
$\mathrm{AB}=\mathrm{BA}$ (Common)
$B C=A D$ (Opposite sides of a parallelogram are equal)
AC = BD (Given)
Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SSS congruency]
$\angle A=\angle B$ [Corresponding parts of Congruent Triangles]
also,
$\angle A+\angle B=180^{\circ}$ (Sum of the angles on the same side of the transversal)
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle A=90^{\circ}=\angle B$
Therefore, ABCD is a rectangle.
Hence Proved.

3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

 Solution:

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.
Given that,
$O A=O C$
$O B=O D$
and $\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{OCD}=\angle \mathrm{ODA}=90^{\circ}$
To show that,
if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
i.e., we have to prove that $A B C D$ is parallelogram and $A B=$ $B C=C D=A D$
Proof,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COB}$,
$O A=O C$ (Given)
$\angle A O B=\angle C O B$ (Opposite sides of a parallelogram are equal)
OB = OB (Common)
Therefore, $\triangle \mathrm{AOB} \cong \triangle C O B$ [SAS congruency]
Thus, $\mathrm{AB}=\mathrm{BC}$ [CPCT]
Similarly we can prove,
$B C=C D$
$C D=A D$
$A D=A B$
, $A B=B C=C D=A D$
Opposites sides of a quadrilateral are equal hence $A B C D$ is a parallelogram.
, ABCD is rhombus as it is a parallelogram whose diagonals intersect at right angle.
Hence Proved.
4. Show that the diagonals of a square are equal and bisect each other at right angles. Solution:

Let $A B C D$ be a square and its diagonals $A C$ and $B D$ intersect each other at 0 .
To show that,
$A C=B D$
$A O=O C$
and $\angle A O B=90^{\circ}$
Proof,
In $\triangle A B C$ and $\triangle B A D$,
$\mathrm{AB}=\mathrm{BA}$ (Common)
$\angle A B C=\angle B A D=90^{\circ}$
$B C=A D$ (Given)
$\triangle A B C \cong \triangle B A D$ [SAS congruency]
Thus,
$\mathrm{AC}=\mathrm{BD}$ [CPCT]
diagonals are equal.
Now,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle B A O=\angle D C O$ (Alternate interior angles)
$\angle A O B=\angle C O D$ (Vertically opposite)
$A B=C D$ (Given)
,$\triangle \mathrm{AOB} \cong \triangle \mathrm{COD}$ [AAS congruency]

Thus,
AO = CO [CPCT].
, Diagonal bisect each other.
Now,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COB}$,
$O B=O B$ (Given)
$A O=C O$ (diagonals are bisected)
$A B=C B$ (Sides of the square)
, $\triangle A O B \cong \triangle C O B$ [SSS congruency]
also, $\angle A O B=\angle C O B$
$\angle A O B+\angle C O B=180^{\circ}$ (Linear pair)
Thus, $\angle A O B=\angle C O B=90^{\circ}$
, Diagonals bisect each other at right angles
5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

Given that,

Let $A B C D$ be a quadrilateral and its diagonals $A C$ and $B D$ bisect each other at right angle at 0 .
To prove that,
The Quadrilateral ABCD is a square.
Proof,
In $\triangle \mathrm{AOB}$ and $\triangle C O D$,
$\mathrm{AO}=\mathrm{CO}$ (Diagonals bisect each other)
$\angle A O B=\angle C O D$ (Vertically opposite)
$\mathrm{OB}=\mathrm{OD}$ (Diagonals bisect each other)
, $\triangle \mathrm{AOB} \cong \triangle C O D$ [SAS congruency]

Thus,

```
AB = CD [CPCT] - (i)
also,
\angleOAB = \angleOCD (Alternate interior angles)
AB || CD
```

Now,
In \triangle AOD and $\triangle C O D$,
AO = CO (Diagonals bisect each other)
$\angle A O D=\angle C O D$ (Vertically opposite)
OD = OD (Common)
, $\triangle \mathrm{AOD} \cong \triangle C O D$ [SAS congruency]
Thus,
$\mathrm{AD}=\mathrm{CD}[\mathrm{CPCT}]-$ (ii)
also,
$A D=B C$ and $A D=C D$
$\Rightarrow A D=B C=C D=A B-$ (ii)
also, $\angle A D C=\angle B C D$ [CPCT]
and $\angle A D C+\angle B C D=180^{\circ}$ (co-interior angles)
$\Rightarrow 2 \angle A D C=180^{\circ}$
$\Rightarrow \angle A D C=90^{\circ}-$ (iii)
One of the interior angles is right angle.
Thus, from (i), (ii) and (iii) given quadrilateral $A B C D$ is a square.
Hence Proved.

6. Diagonal AC of a parallelogram $A B C D$ bisects $\angle A$ (see

 Fig. 8.19). Show that(i) it bisects $\angle \mathrm{C}$ also,
(ii) ABCD is a rhombus.

Fig. 8.19

Solution:
(i) In $\triangle \mathrm{ADC}$ and $\triangle \mathrm{CBA}$,

AD = CB (Opposite sides of a parallelogram)
DC = BA (Opposite sides of a parallelogram)
AC = CA (Common Side)
, $\triangle \mathrm{ADC} \cong \triangle \mathrm{CBA}$ [SSS congruency]
Thus,
$\angle A C D=\angle C A B$ by CPCT
and $\angle \mathrm{CAB}=\angle \mathrm{CAD}$ (Given)
$\Rightarrow \angle A C D=\angle B C A$
Thus,
$A C$ bisects $\angle C$ also.
(ii) $\angle A C D=\angle C A D$ (Proved above)
$\Rightarrow A D=C D$ (Opposite sides of equal angles of a triangle are equal)
Also, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ (Opposite sides of a parallelogram)
Thus,
$A B C D$ is a rhombus.
7. $A B C D$ is a rhombus. Show that diagonal $A C$ bisects $\angle A$ as well as $\angle C$ and diagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Solution:

Given that,
$A B C D$ is a rhombus.
$A C$ and $B D$ are its diagonals.
Proof,
$A D=C D$ (Sides of a rhombus)
$\angle D A C=\angle D C A$ (Angles opposite of equal sides of a triangle are equal.)
also, $A B|\mid C D$
$\Rightarrow \angle \mathrm{DAC}=\angle \mathrm{BCA}$ (Alternate interior angles)
$\Rightarrow \angle D C A=\angle B C A$
, AC bisects $\angle \mathrm{C}$.
Similarly,
We can prove that diagonal $A C$ bisects $\angle A$.
Following the same method,
We can prove that the diagonal $B D$ bisects $\angle B$ and $\angle D$.
8. $A B C D$ is a rectangle in which diagonal $A C$ bisects $\angle A$ as well as $\angle \mathrm{C}$. Show that:
(i) $A B C D$ is a square
(ii) Diagonal $B D$ bisects $\angle B$ as well as $\angle D$.

Solution:

(i) $\angle \mathrm{DAC}=\angle \mathrm{DCA}$ (AC bisects $\angle A$ as well as $\angle \mathrm{C}$)
$\Rightarrow A D=C D$ (Sides opposite to equal angles of a triangle are equal)
also, $\mathrm{CD}=\mathrm{AB}$ (Opposite sides of a rectangle)
, $A B=B C=C D=A D$
Thus, $A B C D$ is a square.
(ii) $\ln \triangle B C D$,
$B C=C D$
$\Rightarrow \angle C D B=\angle C B D$ (Angles opposite to equal sides are equal)
also, $\angle \mathrm{CDB}=\angle \mathrm{ABD}$ (Alternate interior angles)
$\Rightarrow \angle C B D=\angle A B D$
Thus, BD bisects $\angle B$
Now,
$\angle C B D=\angle A D B$
$\Rightarrow \angle C D B=\angle A D B$
Thus, BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
9. In parallelogram $A B C D$, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.20). Show that:
(i) $\triangle A P D \cong \triangle C Q B$
(ii) $\mathrm{AP}=\mathrm{CQ}$
(iii) $\triangle A Q B \cong \triangle C P D$
(iv) $A Q=C P$
(v) APCQ is a parallelogram

Fig. 8.20
Solution:
(i) In $\triangle \mathrm{APD}$ and $\triangle \mathrm{CQB}$,

DP = BQ (Given)
$\angle A D P=\angle C B Q$ (Alternate interior angles)
$A D=B C$ (Opposite sides of a parallelogram)
Thus, $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$ [SAS congruency]
(ii) $\mathrm{AP}=\mathrm{CQ}$ by CPCT as $\triangle \mathrm{APD} \cong \triangle C Q B$.
(iii) In $\triangle A Q B$ and $\triangle C P D$,
$B Q=D P$ (Given)
$\angle A B Q=\angle C D P$ (Alternate interior angles)
$A B=C D$ (Opposite sides of a parallelogram)
Thus, $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$ [SAS congruency]
(iv) As $\triangle \mathrm{AQB} \cong \triangle C P D$
$A Q=C P[C P C T]$
(v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles. , APCQ is a parallelogram.
10. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that
(i) $\triangle A P B \cong \triangle C Q D$
(ii) $A P=C Q$

Solution:
Fig. 8.21
(i) In $\triangle A P B$ and $\triangle C Q D$,
$\angle A B P=\angle C D Q$ (Alternate interior angles)
$\angle \mathrm{APB}=\angle \mathrm{CQD}\left(=90^{\circ}\right.$ as AP and CQ are perpendiculars)
$A B=C D$ (ABCD is a parallelogram)
, $\triangle \mathrm{APB} \cong \triangle C Q D$ [AAS congruency]
(ii) As $\triangle A P B \cong \triangle C Q D$.
, $\mathrm{AP}=\mathrm{CQ}$ [CPCT]
11. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B| | D E, B C=E F$ and $B C|\mid$ $E F$. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22).
Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) $A D$ || $C F$ and $A D=C F$
(iv) quadrilateral ACFD is a parallelogram
(v) AC = DF
(vi) $\triangle A B C \cong \triangle D E F$.

Solution:
(i) $A B=D E$ and $A B|\mid D E$ (Given)

Two opposite sides of a quadrilateral are equal and parallel to each other.
Thus, quadrilateral ABED is a parallelogram
(ii) Again $B C=E F$ and $B C \| E F$.

Thus, quadrilateral BEFC is a parallelogram.
(iii) Since ABED and BEFC are parallelograms.
$\Rightarrow A D=B E$ and $B E=C F$ (Opposite sides of a parallelogram are equal)
, $A D=C F$.
Also, $A D$ || $B E$ and $B E$ || CF (Opposite sides of a parallelogram are parallel)
, AD || CF
(iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.
(v) Since ACFD is a parallelogram
$A C \| D F$ and $A C=D F$
(vi) In $\triangle A B C$ and $\triangle D E F$,
$A B=D E$ (Given)
$B C=E F$ (Given)
$A C=D F$ (Opposite sides of a parallelogram)
, $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ [SSS congruency]

NCERT Solution For Class 9 Maths Chapter 8- Quadrilaterals
12. $A B C D$ is a trapezium in which $A B|\mid C D$ and $A D=B C$ (see

Fig. 8.23). Show that
(i) $\angle A=\angle B$
(ii) $\angle C=\angle D$
(iii) $\triangle A B C \cong \triangle B A D$
(iv) diagonal $A C=$ diagonal $B D$
[Hint : Extend $A B$ and draw a line through C parallel to DA

Fig. 8.23 intersecting AB produced at E.]

Solution:
To Construct: Draw a line through C parallel to DA
intersecting $A B$ produced at E.
(i) $C E=A D$ (Opposite sides of a parallelogram)

AD = BC (Given)
, $\mathrm{BC}=\mathrm{CE}$
$\Rightarrow \angle C B E=\angle C E B$
also,
$\angle A+\angle C B E=180^{\circ}$ (Angles on the same side of transversal
and $\angle \mathrm{CBE}=\angle \mathrm{CEB}$)
$\angle B+\angle C B E=180^{\circ}$ (As Linear pair)
$\Rightarrow \angle A=\angle B$
(ii) $\angle A+\angle D=\angle B+\angle C=180^{\circ}$ (Angles on the same side of transversal)
$\Rightarrow \angle A+\angle D=\angle A+\angle C(\angle A=\angle B)$
$\Rightarrow \angle D=\angle C$
(iii) In $\triangle A B C$ and $\triangle B A D$,
$A B=A B$ (Common)
$\angle D B A=\angle C B A$
$A D=B C$ (Given)
, $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$ [SAS congruency]
(iv) Diagonal $A C=$ diagonal $B D$ by $C P C T$ as $\triangle A B C \cong \triangle B A D$.

Exercise 8.2 Page: 150

1. $A B C D$ is a quadrilateral in which P, Q, R and S are midpoints of the sides $A B, B C, C D$ and $D A$ (see Fig 8.29). $A C$ is a diagonal. Show that:
(i) $S R \| A C$ and $S R=1 / 2 A C$
(ii) $P Q=S R$
(iii) PQRS is a parallelogram.

Solution:

Fig. 8.29
(i) In \triangle DAC,
R is the mid point of $D C$ and S is the mid point of DA.
Thus by mid point theorem, $S R \| A C$ and $S R=1 / 2 A C$
(ii) In $\triangle B A C$,
P is the mid point of $A B$ and Q is the mid point of $B C$.
Thus by mid point theorem, $P Q|\mid A C$ and $P Q=1 / 2 A C$
also, $S R=1 / 2 \mathrm{AC}$
, $P Q=S R$
(iii) $S R$ || AC -------- from question (i)
and, $P Q \| A C-------$ from question (ii)
$\Rightarrow S R \| P Q$ - from (i) and (ii)
also, $\mathrm{PQ}=\mathrm{SR}$
, PQRS is a parallelogram.
2. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rectangle.

Solution:

Given in the question,
$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively.
To Prove,
PQRS is a rectangle.
Construction, Join AC and BD.
Proof:
In $\triangle \mathrm{DRS}$ and $\triangle \mathrm{BPQ}$,
$D S=B Q$ (Halves of the opposite sides of the rhombus)
$\angle S D R=\angle Q B P$ (Opposite angles of the rhombus)
DR = BP (Halves of the opposite sides of the rhombus)
, $\triangle \mathrm{DRS} \cong \triangle \mathrm{BPQ}$ [SAS congruency]
RS = PQ [CPCT] ------- (i)
In \triangle QCR and $\triangle S A P$,
RC = PA (Halves of the opposite sides of the rhombus)
$\angle \mathrm{RCQ}=\angle \mathrm{PAS}$ (Opposite angles of the rhombus)
CQ = AS (Halves of the opposite sides of the rhombus)
, \triangle QCR $\cong \triangle S A P ~[S A S ~ c o n g r u e n c y] ~$
RQ = SP [CPCT] ------- (ii)

Now,
In $\triangle C D B$,
R and Q are the mid points of $C D$ and $B C$ respectively.
$\Rightarrow Q R \| B D$
also,
P and S are the mid points of $A D$ and $A B$ respectively.
$\Rightarrow P S \| B D$
\Rightarrow QR \| $\|$ S
, PQRS is a parallelogram.
also, $\angle \mathrm{PQR}=90^{\circ}$
Now,
In PQRS,
$R S=P Q$ and $R Q=S P$ from (i) and (ii)
$\angle Q=90^{\circ}$
, PQRS is a rectangle.
3. $A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.

Solution:

Given in the question,
$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively.
Construction,
Join AC and BD.
To Prove,
PQRS is a rhombus.

Proof:
In $\triangle A B C$
P and Q are the mid-points of $A B$ and $B C$ respectively
, $P Q|\mid A C$ and $P Q=1 / 2 A C$ (Midpoint theorem) - (i)
In $\triangle A D C$,
SR || AC and $S R=1 / 2 A C$ (Midpoint theorem) - (ii)
So, $P Q \| S R$ and $P Q=S R$
As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.
, PS || QR and PS = QR (Opposite sides of parallelogram) (iii)

Now,
In $\triangle B C D$,
Q and R are mid points of side $B C$ and $C D$ respectively.
, $\mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=1 / 2 \mathrm{BD}$ (Midpoint theorem) - (iv)
$A C=B D$ (Diagonals of a rectangle are equal) - (v)
From equations (i), (ii), (iii), (iv) and (v),
$\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}$
So, PQRS is a rhombus.
Hence Proved
4. $A B C D$ is a trapezium in which $A B|\mid D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting $B C$ at F (see Fig. 8.30). Show that F is the mid-point of $B C$.

Solution:
Given that,
$A B C D$ is a trapezium in which $A B|\mid D C, B D$ is a diagonal and E is the mid-point of AD.
To prove,
F is the mid-point of $B C$.
Proof,
BD intersected EF at G.
In $\triangle B A D$,
E is the mid point of $A D$ and also $E G \| A B$.
Thus, G is the mid point of $B D$ (Converse of mid point theorem)
Now,
In \triangle BDC,
G is the mid point of $B D$ and also $G F\|A B\| D C$.
Thus, F is the mid point of $B C$ (Converse of mid point theorem)
5. In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and $C D$ respectively (see Fig. 8.31). Show that the line segments $A F$ and EC trisect the diagonal BD.

Fig. 8.31

Solution:
Given that,
$A B C D$ is a parallelogram. E and F are the mid-points of sides
$A B$ and CD respectively.
To show,
$A F$ and EC trisect the diagonal BD.
Proof,
$A B C D$ is a parallelogram
, $A B|\mid C D$
also, AE || FC
Now,
$A B=C D$ (Opposite sides of parallelogram $A B C D$)
$\Rightarrow 1 / 2 A B=1 / 2 C D$
$\Rightarrow A E=F C$ (E and F are midpoints of side $A B$ and $C D$)
$A E C F$ is a parallelogram (AE and CF are parallel and equal to each other)
AF || EC (Opposite sides of a parallelogram)
Now,
In \triangle DQC,
F is mid point of side DC and FP || CQ (as AF || EC).
P is the mid-point of $D Q$ (Converse of mid-point theorem)
$\Rightarrow D P=P Q-(i)$
Similarly,
In $\triangle \mathrm{APB}$,
E is midpoint of side $A B$ and $E Q \| A P$ (as $A F \| E C$).
Q is the mid-point of $P B$ (Converse of mid-point theorem)
$\Rightarrow P Q=Q B-(i i)$
From equations (i) and (i),
$D P=P Q=B Q$
Hence, the line segments $A F$ and $E C$ trisect the diagonal BD. Hence Proved.
6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Solution:

Let $A B C D$ be a quadrilateral and P, Q, R and S are the mid points of $A B, B C, C D$ and $D A$ respectively.
Now,
In $\triangle A C D$,
R and S are the mid points of CD and DA respectively. , SR || AC.
Similarly we can show that,
PQ || AC,
$P S|\mid B D$ and
QR\|BD
, PQRS is parallelogram.
PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.
7. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to $B C$ intersects AC at D. Show that
(i) D is the mid-point of $A C$
(ii) $M D \perp A C$
(iii) $C M=M A=1 / 2 A B$ Solution:
(i) In $\triangle A C B$,

M is the midpoint of $A B$ and $M D \| B C$
, D is the midpoint of $A C$ (Converse of mid point theorem)
(ii) $\angle A C B=\angle A D M$ (Corresponding angles) also, $\angle \mathrm{ACB}=90^{\circ}$
, $\angle A D M=90^{\circ}$ and $M D \perp A C$
(iii) In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{CMD}$,
$A D=C D$ (D is the midpoint of side $A C$)
$\angle A D M=\angle C D M$ (Each 90°)
DM = DM (common)
, $\triangle \mathrm{AMD} \cong \triangle \mathrm{CMD}$ [SAS congruency]
$\mathrm{AM}=\mathrm{CM}[\mathrm{CPCT}]$
also, $A M=1 / 2 A B$ (M is midpoint of $A B$)
Hence, $C M=M A=1 / 2 A B$

