EXERCISE 8.1

Write the correct answer in each of the following:

1. Three angles of a quadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. The fourth angle is
(a) 90°
(b) 95°
(c) 105°
(d) 120°

Sol. Fourth angle of the quadrilateral

$$
\begin{aligned}
& =360^{\circ}-\left(75^{\circ}+90^{\circ}+75^{\circ}\right) \\
& =360^{\circ}-240^{\circ} \\
& =120^{\circ}
\end{aligned}
$$

Hence, (d) is the correct answer.
2. A diagonal of a rectangle is inclined to one side of the rectangle at 25°. The acute angle between the diagonals is
(a) 55°
(b) 50°
(c) 40°
(d) 25°

Sol. ABCD is a rectangle in which diagonal AC is inclined to one side AB of the rectangle at an angle of 25°.
Now,

$$
\mathrm{AC}=\mathrm{BD}
$$

$[\because$ Diagonals of a rectangle are equal]

$$
\begin{array}{ll}
\therefore & \frac{1}{2} \mathrm{AC}=\frac{1}{2} \mathrm{BD} \\
\Rightarrow & \mathrm{OA}=\mathrm{OB}
\end{array}
$$

In $\triangle \mathrm{AOB}$, we have $\mathrm{OA}=\mathrm{OB}$
$\therefore \quad \angle \mathrm{OBA}=\angle \mathrm{OAB}=25^{\circ}$
$\therefore \quad \angle \mathrm{AOB}=180^{\circ}-\left(25^{\circ}+25^{\circ}\right)=130^{\circ}$
$\angle \mathrm{AOB}$ and $\angle \mathrm{AOD}$ form angles of a linear pair.
$\therefore \quad \angle \mathrm{AOB}+\angle \mathrm{AOD}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{AOD}=180^{\circ}-130^{\circ}=50^{\circ}$
Hence, the acute angle between the diagonals is 50°.
Therefore, (b) is the correct answer.
3. ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$. Then $\angle \mathrm{ADB}$ is
(a) 40°
(b) 45°
(c) 50°
(d) 60°

Sol. ABCD is a rhombus such that $\angle \mathrm{ACB}=40^{\circ}$.
We know that diagonals of a rhombus bisect each other at right angles. In right $\triangle \mathrm{BOC}$, we have

$$
\begin{aligned}
\angle \mathrm{OBC} & =180^{\circ}-(\angle \mathrm{BOC}+\angle \mathrm{BCO}) \\
& =180^{\circ}-\left(90^{\circ}+40^{\circ}\right)=50^{\circ}
\end{aligned}
$$

$\therefore \angle \mathrm{DBC}=\angle \mathrm{OBC}=50^{\circ}$
Now,

$$
\begin{aligned}
\angle \mathrm{ADB} & =\angle \mathrm{DBC} \quad[\text { Alt. int. } \angle s] \\
\therefore \angle \mathrm{ADB} & =50^{\circ} \quad\left[\because \angle \mathrm{DBC}=50^{\circ}\right]
\end{aligned}
$$

Hence, (c) is the correct answer.
4. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS , taken in a order, is a rectangle, if
(a) PQRS is a rectangle
(b) PQRS is a parallelogram
(c) diagonals of PQRS are perpendicular
(d) diagonals of PQRS are equal

Sol. If diagonals of PQRS are perpendicular.
Hence, (c) is the correct answer.
5. The quadrilateral formed by joining the mid-points of the sides of a quadrilateral PQRS , taken in order, is a rhombus, if
(a) PQRS is a rhombus
(b) PQRS is a parallelogram
(c) diagonals of PQRS are perpendicular
(d) diagonals of PQRS are equal

Sol. If diagonals of PQRS are equal.
Hence, (d) is the correct answer.
6. If angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of the quadrilateral ABCD , taken in a order, are in the ratio 3: 7: 6: 4 , then ABCD is a
(a) rhombus
(b) parallelogram
(c) trapezium
(d) kite

Sol. As angles A, B, C and D of the quadrilateral ABCD , taken in order, are in the ratio $3: 7: 6: 4$, so let the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D be $3 x, 7 x, 6 x$ and $4 x$.
Now, sum of the angles of a quadrilateral is 360°.

$$
\begin{aligned}
& 3 x+7 x+6 x+4 x \\
\Rightarrow 20 x=360^{\circ} & \Rightarrow \quad x 0^{\circ} \\
\Rightarrow & x=360^{\circ} \div 20=18^{\circ}
\end{aligned}
$$

So, the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D of quadrilateral ABCD are $3 \times 18^{\circ}$, $7 \times 18^{\circ}, 6 \times 18^{\circ}$ and $4 \times 18^{\circ}$
i.e., $54^{\circ}, 126^{\circ}, 108^{\circ}$ and 72°

Now, AD and BC are two lines which are cut by a transversal CD such that the sum of angles $\angle \mathrm{C}$ and $\angle \mathrm{D}$ on the same side of transversal is $\angle \mathrm{C}+\angle \mathrm{D}=108^{\circ}+72^{\circ}=180^{\circ}$
$\therefore \mathrm{AD} \| \mathrm{BC}$
So, ABCD is a quadrilateral in which one pair of opposite sides are parallel. Hence, $A B C D$ is a trapezium.
Hence, (c) is the correct answer.
7. If bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{B}$ of a quadrilateral ABCD intersect each other at P , of $\angle \mathrm{B}$ and $\angle \mathrm{C}$ at Q , of $\angle \mathrm{C}$ and $\angle \mathrm{D}$ at R and of $\angle \mathrm{D}$ and $\angle \mathrm{A}$ at S , then PQRS is a
(a) rectangle (b) rhombus
(c) parallelogram
(d) quadrilateral whose opposite angles are
 supplementary
Sol. PQRS is a quadrilateral whose opposite angles are supplementary. Hence, (d) is the correct answer.
8. If APB and CQD are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form
(a) a square
(b) a rhombus
(c) a rectangle
(d) any other parallelogram

Sol.

PNQM is a rectangle. Hence, (c) is the correct answer.
9. The figure obtained by joining the mid-points of the sides of a rhombus, taken in order, is
(a) a rhombus
(b) a rectangle
(c) a square
(d) any parallelogram

Sol. The figure will be a rectangle.
Hence, (b) is the correct answer.
10. D and E are the mid-points of the sides $A B$ and $A C$ of $\triangle A B C$ and O is any point on side $B C$. O is joined to A. If P and Q are the mid-points of OB and OC respectively, then DEQP is
(a) a square
(b) a rectangle
(c) a rhombus
(d) a parallelogram

Sol. Since the line segment joining the mid-points of any two sides of a triangle is parallel to the third side and is half of it, so

$\therefore \quad \mathrm{DE}=\frac{1}{2} \mathrm{BC}$ and $\mathrm{DE} \| \mathrm{BC}$

Similarly,

$$
\mathrm{DP}=\frac{1}{2} \mathrm{AO} \text { and } \mathrm{DP} \| \mathrm{AO}
$$

and

$$
\mathrm{EQ}=\frac{1}{2} \mathrm{AO} \text { and } \mathrm{EQ} \| \mathrm{AO}
$$

$$
\therefore \quad \mathrm{DP}=\mathrm{EQ}
$$

$$
\left[\because \text { Each }=\frac{1}{2} \mathrm{AO}\right]
$$

and DP \| EQ

$$
[\because \mathrm{DP} \| \mathrm{AO} \text { and } \mathrm{EQ} \| \mathrm{AO}]
$$

Now, DEQP is a quadrilateral in which one pair of its opposite sides is equal and parallel.
Therefore, quadrilateral DEQP is a parallelogram.
Hence, (d) is the correct answer.
11. The figure formed by joining the mid-points of the sides of a quadrilateral ABCD , taken in order, is a square only, if
(a) ABCD is a rhombus (b) diagonals of ABCD are equal
(c) diagonals of ABCD are equal and perpendicular
(d) diagonals of ABCD are perpendicular.

Sol. If diagonals of ABCD are equal and perpendicular. Hence, (c) is the correct answer.
12. The diagonals $A C$ and $B D$ of a parallelogram $A B C D$ intersect each other at the point O , if $\angle \mathrm{DAC}=32^{\circ}$ and $\angle \mathrm{AOB}=70^{\circ}$ then $\angle \mathrm{DBC}$ is equal to
(a) 24°
(b) 86°
(c) 38°
(d) 32°

Sol. AD is parallel to BC and AC cuts them,

$$
\begin{aligned}
& \angle \mathrm{DAC}=\angle \mathrm{ACB} \text { [Alt. int. } \angle s] \\
& \angle \mathrm{DAC}=32^{\circ} \quad[\text { Given }]
\end{aligned}
$$

$\therefore \angle \mathrm{ACB}=32^{\circ}$
Now, in $\triangle \mathrm{BOC}, \mathrm{CO}$ is

produced to A
$\therefore \quad$ Ext. $\angle \mathrm{BOA}=\angle \mathrm{OCB}+\angle \mathrm{OBC}$ [By exterior angle theorem]
$\Rightarrow \quad 70^{\circ}=32^{\circ}+\angle \mathrm{OBC}$
$\therefore \quad \angle \mathrm{OBC}=70^{\circ}-32^{\circ}=38^{\circ}$
Hence, $\angle \mathrm{DBC}=38^{\circ}$.
Therefore, (c) is the correct answer.
13. Which of the following is not true for a parallelogram?
(a) Opposite sides are equal.
(b) Opposite angles are equal.
(c) Opposite angles are bisected by the diagonals.
(d) Diagonals bisect each other.

Sol. Opposite angles are bisected by the diagonals. This is not true for a parallelogram.
Hence, (c) is the correct answer.
14. D and E are the mid-points of the sides $A B$ and $A C$ respectively of $\triangle \mathrm{ABC}$. DE is produced to F . To prove that CF is equal and parallel to DA, we need an additional information which is
(a) $\angle \mathrm{DAE}=\angle \mathrm{EFC}$
(b) $\mathrm{AE}=\mathrm{EF}$
(c) $\mathrm{DE}=\mathrm{EF}$
(d) $\angle \mathrm{ADE}=\angle \mathrm{ECF}$

Sol. We need $\mathrm{DE}=\mathrm{EF}$.
Hence, (c) is the correct answer.

EXERCISE 8.2

1. Diagonals AC and BD of a parallelogram ABCD intersect each other at O . If $\mathrm{OA}=3 \mathrm{~cm}$ and $\mathrm{OD}=2 \mathrm{~cm}$, determine the lengths of AC and BD .
Sol. We know that diagonals of a parallelogram bisect each other.
$\therefore \quad \mathrm{AC}=2 \times \mathrm{OA}=2 \times 3 \mathrm{~cm}=6 \mathrm{~cm}$
and
$\mathrm{BD}=2 \mathrm{OD}=2 \times 2 \mathrm{~cm}=4 \mathrm{~cm}$
Hence, lengths of AC and BD are 6 cm and 4 cm respectively.
2. Diagonals of a parallelogram are perpendicular to each other. Is this statement true? Give reason for your answer.
Sol. This statement not true. Diagonals of a parallelogram bisect each other.
3. Can the angles $110^{\circ}, 80^{\circ}, 70^{\circ}$ and 95° be the angles of a quadrilateral? Why or why not?
Sol. Sum of these angles $110^{\circ}+80^{\circ}+70^{\circ}+95^{\circ}=355^{\circ}$
But, sum of the angles of a quadrilateral is always 360°. Hence, $110^{\circ}, 80^{\circ}, 70^{\circ}$ and 95° can not be the angles of a quadrilateral.
4. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$. What special name can be given to this quadrilateral?
Sol. In quadrilateral $\mathrm{ABCD}, \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$ i.e., the sum of two consecutive angles is 180°. So, pair of opposite sides AB and CD are parallel.
Therefore, quadrilateral ABCD is a trapezium. Hence, special name which can be given to this quadrilateral ABCD is trapezium.
5. All the angles of a quadrilateral are equal. What special name is given to this quadrilateral?
Sol. All the angles of a quadrilateral are equal. Also, the sum of angles of a quadrilateral is 360°. Therefore, each angle of a quadrilateral is 90°. So, the given quadrilateral is a rectangle.
Hence, special name given to this quadrilateral is rectangle.
6. Diagonals of a rectangle are equal and perpendicular. Is this statement true? Give reason for your answer.
Sol. The given statement is not true. Diagonals of a rectangle need not to be perpendicular.
7. Can all the four angles of a quadrilateral be obtuse angles? Give reason for your answer.
Sol. No, because then the sum of four angles of the quadrilateral will be more than 360° whereas sum of four angles of a quadrilateral is always equal to 360°.
8. In $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$. If D and E are respectively the mid-points of AB and BC , determine the length of DE .
Sol. In $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$. D and E are respectively the mid-points of $A B$ and $B C$.
$\therefore \quad \mathrm{DE}=\frac{1}{2} \mathrm{AC}=\frac{1}{2} \times 7 \mathrm{~cm}=3.5 \mathrm{~cm} \quad$ [Using the mid-point theorem]
9. In the given figure, it is given that BDEF and FDCE are parallelograms. Can you say that $\mathrm{BD}=\mathrm{CD}$? Why or why not?

Sol. BDEF is a parallelogram.
$\therefore \quad \mathrm{BD}=\mathrm{EF}$
[Opposite sides of a parallelogram are equal]
FDCE is a parallelogram
$\therefore \quad \mathrm{CD}=\mathrm{EF}$
From (1) and (2), we get

$$
\mathrm{BD}=\mathrm{CD}
$$

10. In the given figure, ABCD and AEFG are two parallelograms.

If $\angle \mathrm{C}=55^{\circ}$, determine $\angle \mathrm{F}$.
Sol. We know that opposite angles of a parallelogram are equal.
In parallelogram ABCD , we have

$$
\begin{array}{ll}
& \angle \mathrm{A}=\angle \mathrm{C} \\
\text { But, } & \angle \mathrm{C}=55^{\circ} \\
\therefore & \\
\therefore \mathrm{A}=55^{\circ}
\end{array}
$$

Now, in parallelogram AEFG, we have

$$
\angle \mathrm{F}=\angle \mathrm{A}=55^{\circ}
$$

Hence, $\quad \angle \mathrm{F}=55^{\circ}$.
11. Can all the angles of a quadrilateral be acute angles? Give reason for your answer.
Sol. We know that an acute angle is less than 90°. All the angles of a quadrilateral cannot be acute angles because then angle sum of a quadrilateral will be less than a 360°, whereas angle sum of a quadrilateral is 360°.
12. Can all the angles of a quadrilateral be right angles? Give reason for your answer.
Sol. Yes, all the angles of a quadrilateral can be right angles. Angle sum of a quadrilateral will be 360°, which is true.
13. Diagonals of a quadrilateral ABCD bisect each other. If $\angle \mathrm{A}=35^{\circ}$, determine $\angle \mathrm{B}$.
Sol. As the diagonals of a quadrilateral ABCD bisect each other, so ABCD is a parallelogram.
Now, ABCD is a parallelogram
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}$
[\because Adjacent angles of a parallelogram are supplementary]

$$
\begin{aligned}
\therefore & & 35^{\circ}+\angle \mathrm{B} & =180^{\circ} \\
\Rightarrow & & \angle \mathrm{B} & =180^{\circ}-35^{\circ}=145^{\circ}
\end{aligned}
$$

14. Opposite angles of a quadrilateral ABCD are equal. If $\mathrm{AB}=4 \mathrm{~cm}$, determine CD.
Sol. Since opposite angles of a quadrilateral are equal, so it is parallelogram.
Now, ABCD is a parallelogram, so $\mathrm{AB}=\mathrm{CD}$.
[\because Opposite sides of a parallelogram are equal]
But, $\quad A B=4 \mathrm{~cm}$, therefore $C D=4 \mathrm{~cm}$.
Hence, $\quad C D=4 \mathrm{~cm}$.

EXERCISE 8.3

1. One angle of a quadrilateral is of 108° and the remaining three angles are equal. Find each of the three equal angles.
Sol. One angle of a quadrilateral is of 108° and let each of the three remaining equal angles be x°.
As the sum of the angles of a quadrilateral is 360°.

$$
\begin{aligned}
\therefore & & 108^{\circ}+x+x+x & =360^{\circ} \Rightarrow 3 x=360^{\circ}-108^{\circ}=252^{\circ} \\
& \therefore & x & =252^{\circ} \div 3=84^{\circ}
\end{aligned}
$$

Hence, each of three angles be 84°.
2. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and $\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$. Find angles C and D of the trapezium.
Sol. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$.

Now, $\mathrm{AB} \| \mathrm{DC}$ and AD is a transversal.
$\therefore \quad \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$
[\because Sum of interior angles on the same side of the transversal is 180°]
$\Rightarrow \quad 45^{\circ}+\angle \mathrm{D}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{D}=180^{\circ}-45^{\circ}=135^{\circ}$
Similarly,

$$
\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}
$$

$\Rightarrow \quad 45^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{C}=180^{\circ}-45^{\circ}=135^{\circ}$
Hence, $\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$ and $\angle \mathrm{C}=\angle \mathrm{D}=135^{\circ}$.
3. The angle between two altitudes of a parallelogram through the vertex of an obtuse angle of the parallelogram is 60°. Find the angles of the parallelogram.

Sol. In quadrilateral PBQD,

$$
\begin{aligned}
& \angle 1+\angle 2+\angle \mathrm{B}+\angle 3=360^{\circ} \\
& \Rightarrow 60^{\circ}+90^{\circ}+\angle \mathrm{B}+90^{\circ}=360^{\circ} \\
& \Rightarrow \quad \angle \mathrm{B}+240^{\circ}=360^{\circ} \\
& \Rightarrow \quad \angle \mathrm{B}=360^{\circ}-240^{\circ} \\
& \Rightarrow \quad \angle \mathrm{B}=120^{\circ} \\
& \text { Now, } \quad \angle \mathrm{ADC}=\angle \mathrm{B}=120^{\circ} \\
& \text { [} \because \text { Opposite angles of a parallelogram are equal] } \\
& \angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \\
& \text { [} \because \text { Sum of consecutive interior angles is } 180^{\circ} \text {] } \\
& \Rightarrow \quad \angle \mathrm{A}+120^{\circ}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{A}=180^{\circ}-120^{\circ} \\
& \Rightarrow \quad \angle \mathrm{A}=60^{\circ} \\
& \text { But, } \quad \angle \mathrm{C}=\angle \mathrm{A}=60^{\circ} \\
& \text { [} \because \text { Opposite angles of a parallelogram are equal] }
\end{aligned}
$$

4. ABCD is a rhombus in which altitude from D to side AB bisects AB . Find the angles of the rhombus.
Sol. In $\triangle \mathrm{APD}$ and $\triangle \mathrm{BPD}$, we have

$$
\mathrm{AP}=\mathrm{BP}
$$

So, by SAS criterion of congruence, we have

$$
\begin{equation*}
\Delta \mathrm{APD} \cong \triangle \mathrm{BPD} \tag{СРСТ}
\end{equation*}
$$

$\therefore \quad \angle \mathrm{A}=\angle 3$
But, $\quad \angle 3=\angle 4 \quad\left[\because\right.$ Diagonals bisect opposite $\begin{array}{c}\text { angles of a rhombus }]\end{array}$

$$
\begin{equation*}
\Rightarrow \quad \angle A=\angle 3=\angle 4 \tag{1}
\end{equation*}
$$

Now, $\quad A D \| B C$
So, $\quad \angle \mathrm{A}+\angle \mathrm{ABC}=180^{\circ}\left[\because\right.$ Sum of consecutive interior angles is $\left.180^{\circ}\right]$
$\Rightarrow \quad \angle \mathrm{A}+\angle 3+\angle 4=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{A}+\angle \mathrm{A}+\angle \mathrm{A}=180^{\circ}$
$\Rightarrow \quad 3 \angle A=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{A}=\frac{180^{\circ}}{3}=60^{\circ}$
Now, $\quad \angle \mathrm{ABC}=\angle 3+\angle 4$
$=60^{\circ}+60^{\circ}$
$=120^{\circ}[\because$ Opposite angles of a rhombus are equal $]$
$\therefore \quad \angle \mathrm{ADC}=\angle \mathrm{ABC}=120^{\circ} \quad$ [Same reason as above]
5. E and F are points on diagonal AC of a parallelogram ABCD such that $\mathrm{AE}=\mathrm{CF}$. Show that BFDE is a parallelogram.
Sol. Given : A parallelogram ABCD: E and F are points on diagonal AC of parallelogram ABCD such that $\mathrm{AE}=\mathrm{CF}$.

To prove : BFDE is a parallelogram.
 Proof: ABCD is a parallelogram.

$$
\begin{equation*}
\therefore \quad \mathrm{OD}=\mathrm{OB} \tag{1}
\end{equation*}
$$

$\mathrm{OA}=\mathrm{OC}$
$\mathrm{AE}=\mathrm{CF}$
[\because Diagonals of parallelogram bisect each other] [Same reason as above] [Given]

Subtracting (3) from (2), we get

$$
\begin{array}{rlrl}
& & \mathrm{OA}-\mathrm{AE} & =\mathrm{OC}-\mathrm{CF} \\
\Rightarrow \quad & \mathrm{OE} & =\mathrm{OF}
\end{array}
$$

\therefore BFDE is a parallelogram.

$$
[\because \mathrm{OD}=\mathrm{OB} \text { and } \mathrm{OE}=\mathrm{OF}]
$$

Hence, proved.
6. E is the mid-point of the side AD of the trapezium ABCD with $\mathrm{AB} \| \mathrm{DC}$. A line through E drawn parallel to AB intersect BC at F . Show that F is the mid-point of BC. [Hint: Join AC]

Sol. Given : A trapezium ABCD in which $A B \| D C$ and E is the midpoint of the side AB . Also, $\mathrm{EF} \|$ AB.
To prove : F is the mid-point of BC.

Construction : Join AC which intersects EF at O .
Proof: In $\triangle \mathrm{ADC}, \mathrm{E}$ is the mid-point of AD and $\mathrm{EF} \| \mathrm{DC}$.

$$
[\because \mathrm{EF} \| \mathrm{AB} \text { and } \mathrm{DC}\|\mathrm{AB} \Rightarrow \mathrm{AB}\| \mathrm{EF} \| \mathrm{DC}]
$$

$\therefore \mathrm{O}$ is the mid-point of AC.
[Converse of mid-point theorem]
Now, in $\triangle C A B, O$ is the mid-point of $A C$ and $O F \| A B$.
$\Rightarrow \quad \mathrm{OF}$ bisects BC .
Or, F is the mid-point of BC .
Hence, proved.
7. Through A, B and C, lines RQ, PR and $Q P$ have been drawn, respectively parallel to sides BC , CA and $A B$ of a $\triangle A B C$ as shown in the given figure. Show that $\mathrm{BC}=\frac{1}{2} \mathrm{QR}$.
Sol. Given : Triangles ABC and PQR in which AB || QP, BC || RQ and CA $\|$ PR.

To prove : $\mathrm{BC}=\frac{1}{2} \mathrm{QR}$
Proof: Quadrilateral RBCA is a parallelogram.
$[\because \mathrm{RA}|\mid \mathrm{BC}$ and BR$| \mid \mathrm{CA}]$
$\therefore \quad \mathrm{RA}=\mathrm{BC} \quad . . .(1)[\because$ Opposite sides of a parallelogram $]$
Now, quadrilateral BCQA is a parallelogram.
$\therefore \quad \mathrm{AQ}=\mathrm{BC} \quad \ldots(2)[\because$ Opposite sides of a parallelogram $]$
Adding (1) and (2), we get
$R A+A Q=2 B C$
$\Rightarrow \quad \mathrm{QR}=2 \mathrm{BC}$
$\Rightarrow \quad \mathrm{BC}=\frac{1}{2} \mathrm{QR}$
Hence, proved.
8. D, E and F are the mid-points of the sides BC, CA and AB , respectively of an equilateral triangle ABC . Show that $\triangle \mathrm{DEF}$ is also an equilateral triangle.
Sol. Given : $\triangle \mathrm{ABC}$ is an equilateral triangle. D, E and F are the midpoints of the sides BC, CA and $A B$, respectively of $\triangle A B C$.
To prove : $\triangle \mathrm{DEF}$ is an equilateral triangle.
Proof: FE joins mid-points of sides AB and AC respectively.

$$
\therefore \quad \mathrm{FE}=\frac{1}{2} \mathrm{BC}
$$

... (1) [Mid-point theorem]
Similarly, $\quad \mathrm{DE}=\frac{1}{2} \mathrm{BC}$
... (2) [Mid-point theorem]

$$
\mathrm{DF}=\frac{1}{2} \mathrm{AC}
$$

... (3) [Mid-point theorem]

But, $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$. (4) [Sides of an equilateral $\Delta \mathrm{ABC}$]
From (1), (2), (3) and (4), we have

$$
\mathrm{DE}=\mathrm{EF}=\mathrm{FD}
$$

$\therefore \triangle \mathrm{DEF}$ is an equilateral triangle.
Hence, proved.
9. Points P and Q have been taken on opposite sides $A B$ and $C D$ respectively of a parallelogram $A B C D$ such that $A P=C Q$. Show that AC and PQ bisect each other.
Sol. Points P and Q have been taken on opposite sides $A B$ and $C D$ respectively of a parallelogram $A B C D$ such that $A P=C Q$.

In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{COQ}$, we have

$$
\begin{array}{rlrl}
\mathrm{AP} & =\mathrm{CQ} \\
\angle 1 & =\angle 2 \\
\angle 3 & =\angle 4 \\
\therefore & \triangle \mathrm{AOP} & \cong \Delta \mathrm{COQ} \\
\therefore \quad & \mathrm{OA} & =\mathrm{OC} \text { and } \mathrm{OP}=\mathrm{OQ}
\end{array}
$$

[Given]
[Alt. int $\angle s$ are equal]
[Vertically opp. $\angle s$]

Hence, AC and PQ bisect each other.
10. In the given figure, P is the mid-point of side $B C$ of a parallelogram $A B C D$ such that $\angle B A P=\angle D A P$. Prove that $A D=2 C D$.

Sol.

$$
\begin{equation*}
\angle \mathrm{BAP}=\angle \mathrm{DAP}=\frac{1}{2} \angle \mathrm{~A} \tag{1}
\end{equation*}
$$

Since $A B C D$ is a parallelogram, we have

$$
\begin{equation*}
\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ} \tag{2}
\end{equation*}
$$

$\left[\because\right.$ Sum of interior angles on the same side of transversal is 180°]

In $\triangle \mathrm{ABP}$, we have

$$
\angle \mathrm{BAP}+\angle \mathrm{B}+\angle \mathrm{APB}=180^{\circ}
$$

$\Rightarrow \frac{1}{2} \theta \angle \mathrm{~A}+180^{\circ}-\angle \mathrm{A}+\angle \mathrm{APB}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{~A}$
From (1) and (3), we get

$$
\begin{align*}
\angle \mathrm{BAP} & =\angle \mathrm{APB} \\
\mathrm{BP} & =\mathrm{AB} \tag{4}
\end{align*}
$$

$[\because$ Sides opposite to equal angles are equal]
Since opposite sides of a parallelogram are equal, we have

$$
\begin{array}{rlrl}
& \mathrm{AD} & =\mathrm{BC} \Rightarrow \frac{1}{2} \mathrm{AD}=\frac{1}{2} \mathrm{BC} \\
\Rightarrow & \frac{1}{2} \mathrm{AD} & =\mathrm{BP} & {[\because \mathrm{P} \text { is the mid-point of } \mathrm{BC}]} \\
\Rightarrow \quad \frac{1}{2} \mathrm{AD} & =\mathrm{AB} & {[\because \text { From }(4), \mathrm{BP}=\mathrm{AB}]}
\end{array}
$$

Since opposite sides of a parallelogram are equal, we have

$$
\frac{1}{2} \mathrm{AD}=\mathrm{CD} \Rightarrow \mathrm{AD}=2 \mathrm{CD}
$$

Hence, proved.

EXERCISE 8.4

1. A square is inscribed in an isosceles right triangle so that the square and the triangle have one angle common. Show that the vertex of the square opposite the vertex of the common angle bisects the hypotenuse.
Sol. ABC is an isosceles right triangle with $A B=B C$. A square $B F E D$ is inscribed in triangle ABC so that $\angle \mathrm{B}=$ common $=90^{\circ}$. In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{EFC}$, we have
$\mathrm{DE}=\mathrm{EF}$
$[\because$ Sides of a square are equal] $\angle 1+\angle 2=180^{\circ}$
[Linear pair axiom]

$$
\begin{array}{rlrl}
\Rightarrow & & 90^{\circ}+\angle 2 & =180^{\circ} \\
\Rightarrow & \angle 2 & =90^{\circ} & {\left[\because \text { Each angle of a square }=90^{\circ}\right]} \\
& &
\end{array}
$$

```
Similarly, \(\quad \angle 4=90^{\circ}\)
\(\therefore \quad \angle 2=\angle 4\)
Now, \(\quad \mathrm{AB}=\mathrm{BC}\)
\(\therefore \quad \angle \mathrm{C}=\angle \mathrm{A}\)
Now,
\(\mathrm{AB}=\mathrm{BC}\)
\(\therefore \quad \angle \mathrm{C}=\angle \mathrm{A}\)
```

...(2) $\left[\because\right.$ Each $\left.=90^{\circ}\right]$
[Given]
$[\because$ Angles opp. to equal sides are equal]
From (1), (2) and (3), we get
$\Delta \mathrm{ADE} \cong \triangle \mathrm{EFC}$
[By AAS Congruence rule]
Hence,
$\mathrm{AE}=\mathrm{EC}$
[CPCT]
2. In a parallelogram $\mathrm{ABCD}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AD}=6 \mathrm{~cm}$. The bisector of $\angle \mathrm{A}$ meets DC in E . AE and BC produced meet at F . Find the length of CF.
Sol. ABCD is a parallelogram, in which $\mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AD}=6 \mathrm{~cm}$. The bisector of $\angle \mathrm{A}$ meets DC in E . AE and BC produced meet at F .

$$
\begin{aligned}
& \angle \mathrm{BAE}=\angle \mathrm{EAD} \\
& \text {...(1) }[\because \text { AE bisects } \angle A] \\
& \angle \mathrm{EAD}=\angle \mathrm{EFB} \\
& \text {...(2) [Alt. } \angle s \text {] } \\
& \Rightarrow \quad \angle \mathrm{BAE}=\angle \mathrm{EFB} \quad[\text { From (1) and (2)] } \\
& \therefore \quad \mathrm{BF}=\mathrm{AB} \quad[\because \text { Sides opposite to equal } \angle s \text { are equal }] \\
& \Rightarrow \quad \mathrm{BF}=10 \mathrm{~cm} \quad[\because \mathrm{AB}=10 \mathrm{~cm}] \\
& \Rightarrow \quad \mathrm{BC}+\mathrm{CF}=10 \mathrm{~cm} \Rightarrow 6 \mathrm{~cm}+\mathrm{CF}=10 \mathrm{~cm} \\
& {[\because \mathrm{BC}=\mathrm{AD}=6 \mathrm{~cm} \text {, opposite sides of a } \| \mathrm{gm}]} \\
& \Rightarrow \quad \mathrm{CF}=10 \mathrm{~cm}-6 \mathrm{~cm}=4 \mathrm{~cm}
\end{aligned}
$$

3. P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$ of a quadrilateral $A B C D$ in which $\mathrm{AC}=\mathrm{BD}$. Prove that PQRS is a rhombus.
Sol. Given: A quadrilateral ABCD in which $\mathrm{AC}=\mathrm{BD}$ and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are respectively the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA of quadrilateral ABCD .

To prove: PQRS is a rhombus.
Proof: In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are the mid-points of sides AB and BC respectively.
That is, PQ joins mid-points of sides AB and BC .

$$
\begin{equation*}
\therefore \quad \mathrm{PQ} \| \mathrm{AC} \tag{1}
\end{equation*}
$$

and

$$
\mathrm{PQ}=\frac{1}{2} \mathrm{AC}
$$

...(2) [Mid-point theorem]
In $\triangle \mathrm{ADC}, \mathrm{R}$ and S are the mid-points of CD and AD respectively.

$$
\begin{equation*}
\therefore \quad \mathrm{SR} \| \mathrm{AC} \tag{3}
\end{equation*}
$$

and $\mathrm{SR}=\frac{1}{2} \mathrm{AC}$
...(4) [Mid-point theorem]
From (1) and (3), we get PQ || SR From (2) and (4), we get $P Q=S R$
$\Rightarrow \quad$ PQRS is a parallelogram.
In $\triangle \mathrm{DAB}, \mathrm{SP}$ joins mid-points of sides DA and AB respectively.

$$
\begin{array}{rlr}
\therefore \quad & \mathrm{SP}=\frac{1}{2} \mathrm{BD} & \ldots(5) \text { [Mid-point theorem] } \\
\mathrm{AC} & =\mathrm{BD} & \ldots(6) \text { [Given] }
\end{array}
$$

From equations (2), (5) and (6), we get $S P=P Q$
\therefore Parallelogram PQRS is a rhombus.
Hence, proved.
4. $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are respectively the mid-points of the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA of a quadrilateral ABCD such that $A C \perp B D$. Prove that PQRS is a rectangle.
Sol. Given: A quadrilateral ABCD in which $\mathrm{AC} \perp \mathrm{BD}$ and $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are respectively the mid-points of
 the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA of quadrilateral ABCD . To prove: PQRS is a rectangle.
Proof: In $\triangle \mathrm{ABC}, \mathrm{P}$ and Q are the mid-points of sides AB and BC respectively.
That is, PQ joins mid-points of sides AB and BC .
$\therefore \quad \mathrm{PQ} \| \mathrm{AC}$
and $P Q=\frac{1}{2} A C$...(2) [Mid-point theorem]

In $\triangle \mathrm{ADC}, \mathrm{R}$ and S are the mid-points of CD and AD respectively.

$$
\begin{equation*}
\therefore \quad \mathrm{SR} \| \mathrm{AC} \tag{3}
\end{equation*}
$$

and $\quad \mathrm{SR}=\frac{1}{2} \mathrm{AC}$
From (1) and (3), we get
PQ || SR
$\Rightarrow \quad \mathrm{PQRS}$ is a parallelogram.
PQ \| AC
$\Rightarrow \quad \mathrm{PE} \| \mathrm{GF}$
In $\triangle A B D$, $P S$ joins mid-
$\therefore \quad \mathrm{PS} \| \mathrm{BD} \quad$ [Mid-point theorem]
$\Rightarrow \quad P G \| E F$
\Rightarrow PEFG is a parallelogram
$\Rightarrow \quad \angle 1=\angle 2$
But, $\quad \angle 1=90^{\circ} \quad[\because \mathrm{AC} \perp \mathrm{BD}]$
$\therefore \quad \angle 2=90^{\circ}$
\Rightarrow Parallelogram PQRS is a rectangle.
5. P, Q, R and S are respectively the mid-points of sides $A B, B C, C D$ and DA of quadrilateral ABCD in which $\mathrm{AC}=\mathrm{BD}$ and $\mathrm{AC} \perp \mathrm{BD}$. Prove that PQRS is a square.
Sol. Given : A quadrilateral ABCD is which $A C=B D$ and $A C \perp B D . P, Q, R$ and S are respectively the mid-points of sides AB , $B C, C D$ and $D A$ of quadrilateral $A B C D$.
To prove : PQRS is a square.
Proof : Parallelogram PQRS is a rectangle.

$$
\begin{equation*}
\mathrm{PQ}=\frac{1}{2} \mathrm{AC} \tag{1}
\end{equation*}
$$

PS joins mid-points of sides AB and AD respectively.

$$
\begin{aligned}
\mathrm{PS} & =\frac{1}{2} \mathrm{BD} \\
\mathrm{AC} & =\mathrm{BD}
\end{aligned}
$$

... (2) [Mid-point theorem]
... (3) [Given]
From (1), (2) and (3), we get

$$
P S=P Q
$$

\Rightarrow Rectangle $P Q R S$ is a square.
6. A diagonal of a parallelogram bisects one of its angles. Show that it is a rhombus.
Sol. ABCD is a parallelogram and diagonal AC bisects $\angle \mathrm{A}$. We have to show that ABCD is a rhombus.

$$
\begin{equation*}
\angle 1=\angle 2 \tag{1}
\end{equation*}
$$

$$
\angle 2=\angle 4
$$

...(2) [\because Alt. interior angles]
From (1) and (2), we get $\angle 1=\angle 4$
Now, in $\triangle A B C$, we have $\angle 1=\angle 4$ [Proved above]

$$
\therefore \quad \mathrm{BC}=\mathrm{AB}
$$

[\because Sides opp. to equal $\angle s$ are equal]
Also, $\mathrm{AB}=\mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC} \quad[\because$ Opposite sides of a parallelogram are equal]
$\mathrm{So}, \mathrm{ABCD}$ is a parallelogram in which its sides $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$.
Hence, ABCD is a rhombus.
7. P and Q are the mid-points of the opposite sides AB and CD of a parallelogram ABCD . AQ intersects DP at S and BQ intersects CP at R . Show that PQRS is a parallelogram.
Sol. Given : A parallelogram ABCD in which P and Q are the mid-points of the sides AB and CD respectively. AQ intersects DP at S and $B Q$ intersects $C P$ at R.
To prove : PRQS is a parallelogram. A

Proof: $\mathrm{DC} \| \mathrm{AB}[\because$ Opposite sides of a parallelogram are parallel $]$
$\Rightarrow \quad \mathrm{AP} \| \mathrm{QC}$
$\mathrm{DC}=\mathrm{AB} \quad[\because$ Opposite sides of a parallelogram are equal $]$
$\Rightarrow \quad \frac{1}{2} \mathrm{DC}=\frac{1}{2} \mathrm{AB}$
$\Rightarrow \quad \mathrm{QC}=\mathrm{AP} \quad[\because \mathrm{P}$ is mid-point of AB and Q is mid-point of CD] $[\because \mathrm{AP} \| \mathrm{QC}$ and $\mathrm{QC}=\mathrm{AP}]$
$\Rightarrow \mathrm{APCQ}$ is a parallelogram.
$\therefore \quad \mathrm{AQ} \| \mathrm{PC} \quad[\because$ Opposite sides of a $\|$ gm are parallel $]$
$\Rightarrow \quad$ SQ $\|$ PR
Similarly, SP \|QR
\therefore Quadrilateral PRQS is a parallelogram.
Hence, proved.
8. ABCD is a quadrilateral in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$. Prove that $\angle \mathrm{A}$ $=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D}$.
Sol. Given : A quadrilateral ABCD in which $\mathrm{AB} \| \mathrm{DC}$ and $\mathrm{AD}=\mathrm{BC}$.
To prove : $\angle \mathrm{A}=\angle \mathrm{B}$ and $\angle \mathrm{C}=\angle \mathrm{D}$

Construction : Draw $\mathrm{DP} \perp \mathrm{AB}$ and $\mathrm{CQ} \perp \mathrm{AB}$.
Proof : In $\triangle A P D$ and $\triangle B Q C$, we have

$$
\begin{aligned}
\angle 1 & =\angle 2 \\
& {\left[\because \text { Each equal to } 90^{\circ}\right] } \\
\mathrm{AD} & =\mathrm{BC} \\
\mathrm{DP} & =\mathrm{CQ}
\end{aligned}
$$

[Distance between parallel lines]
So, by RHS criterion of congruence, we have

$$
\begin{align*}
& & \Delta \mathrm{APD} & \cong \triangle \mathrm{BQC} \\
\therefore & & \angle \mathrm{~A} & =\angle \mathrm{B} \tag{CPCT}
\end{align*}
$$

Now, $\mathrm{DC} \| \mathrm{AB}$

$$
\begin{array}{rr}
\angle \mathrm{A}+\angle 3=180^{\circ} \quad \ldots(1)[\because \text { Sum of consecutive interior } \\
\text { angles is } \left.180^{\circ}\right] \\
\angle \mathrm{B}+\angle 4=180^{\circ} & \ldots(2)[\text { Same reason] }
\end{array}
$$

From (1) and (2), we get

$$
\begin{aligned}
& & \angle \mathrm{A}+\angle 3 & =\angle \mathrm{B}+\angle 4 \\
\Rightarrow & & \angle 3 & =\angle 4 \\
\Rightarrow & & \angle \mathrm{C} & =\angle \mathrm{D}
\end{aligned}
$$

$$
\Rightarrow \quad \angle 3=\angle 4 \quad[\because \angle \mathrm{~A}=\angle \mathrm{B}]
$$

Hence, proved.
9. In the given figure, $\mathrm{AB}\|\mathrm{DE}, \mathrm{AB}=\mathrm{DE}, \mathrm{AC}\| \mathrm{DF}$ and $\mathrm{AC}=\mathrm{DF}$. Prove that $\mathrm{BC} \| \mathrm{EF}$ and $\mathrm{BC}=\mathrm{EF}$.

Sol.

Given : $\mathrm{AB}\|\mathrm{DE}, \mathrm{AB}=\mathrm{DE}, \mathrm{AC}\| \mathrm{DF}$ and $\mathrm{AC}=\mathrm{DF}$
To prove : $\mathrm{BC} \| \mathrm{EF}$ and $\mathrm{BC}=\mathrm{EF}$
Proof: $\quad \mathrm{AC} \| \mathrm{DF}$
[Given]
and $\quad \mathrm{AC}=\mathrm{DF}$
\therefore ACFD is a parallelogram.
$\Rightarrow \quad \mathrm{AD} \| \mathrm{CF} \quad \ldots(1)[\because$ Opposite sides of $\mathrm{a} \| \mathrm{gm}$ are parallel $]$ and $\quad \mathrm{AD}=\mathrm{CF} \quad . . .(2)[\because$ Opposite sides of a $\| \mathrm{gm}$ are equal $]$ Now, $\quad \mathrm{AB} \| \mathrm{DE}$ and $\quad \mathrm{AB}=\mathrm{DE}$
\therefore ABED is a parallelogram.
$\Rightarrow \quad \mathrm{AD} \| \mathrm{BE} \quad \ldots(3)[\because$ Opposite sides of a $\| \mathrm{gm}$ are parallel $]$
and $\quad \mathrm{AD}=\mathrm{BE} \quad \ldots(4)[\because$ Opposite sides of a $| | \mathrm{gm}$ are equal $]$
From (1) and (3), we get
CF \| BE
And, from (2) and (4), we get

$$
\mathrm{CF}=\mathrm{BE}
$$

\therefore BCFE is a parallelogram.
$\Rightarrow \quad \mathrm{BC} \| \mathrm{EF} \quad[\because$ Opposite sides of a $\|$ gm are parallel $]$
and $\quad \mathrm{BC}=\mathrm{EF} \quad[\because$ Opposite sides of a $\|$ gm are equal $]$ Hence, proved.
10. E is the mid-point of a median AD of $\triangle \mathrm{ABC}$ and BE is produced to meet AC at F . Show that $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$.

Sol. Given : $\mathrm{A} \triangle \mathrm{ABC}$ in which E is the mid-point of median AB and BE is produced to meet $A C$ at F.

To prove : $\mathrm{AF}=\frac{1}{3} \mathrm{AC}$
Construction: Draw DG \| BF intersecting AC at G .
Proof: In $\triangle \mathrm{ADG}, \mathrm{E}$ is the mid-
 point of $A D$ and $E F \| D G$.
$\therefore \quad \mathrm{AF}=\mathrm{FG} \quad \ldots$ (1) [Converse of mid-point theorem]
In $\triangle F B C, D$ is the mid-point of $B C$ and $D G \| B F$.
$\therefore \quad \mathrm{FG}=\mathrm{GC} \quad \ldots$ (2) [Converse of mid-point theorem]
From equations (1) and (2), we get

$$
\begin{equation*}
\mathrm{AF}=\mathrm{FG}=\mathrm{GC} \tag{3}
\end{equation*}
$$

But, $\quad \mathrm{AC}=\mathrm{AF}+\mathrm{FG}+\mathrm{GC}$
$\Rightarrow \quad \mathrm{AC}=\mathrm{AF}+\mathrm{AF}+\mathrm{AF}$
[Using (3)]
$\Rightarrow \quad \mathrm{AC}=3 \mathrm{AF}$
$\Rightarrow \quad \mathrm{AF}=\frac{1}{3} \mathrm{AC}$
Hence, proved.
11. Show that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square.
Sol. Given: A square ABCD in which $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are the mid-points of sides $A B, B C, C D, D A$ respectively. $P Q, Q R, R S$ and $S P$ are joined.

To prove: PQRS is a square. Construction: Join AC and BD. Proof: In $\triangle A B C, P$ and Q are the mid-points of sides AB and BC respectively.
$\therefore \quad \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=\frac{1}{2} \mathrm{AC}$
In $\triangle A D C, R$ and S are the mid-points of $C D$ and AD respectively.

$$
\begin{equation*}
\therefore \quad \mathrm{RS} \| \mathrm{AC} \quad \text { and } \quad \mathrm{RS}=\frac{1}{2} \mathrm{AC} \tag{2}
\end{equation*}
$$

From eqs. (1) and (2), we get

$$
\begin{equation*}
\mathrm{PQ} \| \mathrm{RS} \quad \text { and } \quad \mathrm{PQ}=\mathrm{RS} \tag{3}
\end{equation*}
$$

Thus, in quadrilateral PQRS one pair of opposite sides are equal and parallel.
Hence, PQRS is a parallelogram.
Since ABCD is a square.

$$
\begin{array}{rlrl}
\therefore & \mathrm{AB} & =\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \\
\Rightarrow & \frac{1}{2} \mathrm{AB} & =\frac{1}{2} \mathrm{CD} \quad \text { and } \quad \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{BC} \\
\Rightarrow & & \mathrm{~PB} & =\mathrm{RC} \quad \text { and } \quad \mathrm{BQ}=\mathrm{CQ}
\end{array}
$$

Thus, in $\Delta \mathrm{s}$ PBQ and RCQ, we have

$$
\mathrm{PB}=\mathrm{RC}
$$

$$
\mathrm{BQ}=\mathrm{CQ} \quad[\Rightarrow \mathrm{~PB}=\mathrm{CR} \text { and } \mathrm{BQ}=\mathrm{CQ}]
$$

and, $\angle \mathrm{PBQ}=\angle \mathrm{RCQ}$
So, by SAS criterion of congruence, we have

$$
\begin{array}{rlrl}
& & \Delta \mathrm{PBQ} & \cong \Delta \mathrm{RCQ} \tag{4}\\
\Rightarrow & \mathrm{PQ} & =\mathrm{QR}
\end{array}
$$

From (3) and (4), we have

$$
\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}
$$

But, PQRS is a parallelogram
$\therefore \quad \mathrm{QR}=\mathrm{PS}$
So, $\quad \mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{PS}$
Now, $\quad \mathrm{PQ} \| \mathrm{AC}$
$\Rightarrow \quad \mathrm{PM} \| \mathrm{NO}$
Since P and S are the mid-points of $A B$ and $A D$ respectively.

$$
\begin{array}{ll}
& \mathrm{PS} \| \mathrm{BD} \tag{6}\\
\Rightarrow & \mathrm{PN} \| \mathrm{MO}
\end{array}
$$

Thus, in quadrilateral PMON, we have
PM || NO
and $\quad \mathrm{PN} \| \mathrm{MO}$

So, PMON is a parallelogram.
$\Rightarrow \quad \angle \mathrm{MPN}=\angle \mathrm{MON}$
$\Rightarrow \quad \angle \mathrm{MPN}=\angle \mathrm{BOA}$
$[\because \angle \mathrm{MON}=\angle \mathrm{BOA}]$
$\Rightarrow \quad \angle \mathrm{MPN}=90^{\circ}$
$[\because$ Diagonals of square are \perp
$\therefore \mathrm{AC} \perp \mathrm{BD} \Rightarrow \angle \mathrm{BOA}=90^{\circ}$]
$\Rightarrow \quad \angle \mathrm{QPS}=90^{\circ}$
Thus, PQRS is a quadrilateral such that $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}=\mathrm{SP}$ and $\angle \mathrm{QPS}=90^{\circ}$,
Hence, PQRS is a square.
12. E and F are respectively the mid-points of the non-parallel sides $A D$ and BC of a trapezium ABCD . Prove that $\mathrm{EF} \| \mathrm{AB}$ and $\mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{CD})$.
[Hint: Join BE and produce it to meet CD produced at G]
Sol.

Given: A trapezium ABCD in which E and F are respectively the mid-points of the non-parallel sides AD and BC .
To prove : $\mathrm{EF} \| \mathrm{AB}$ and $\mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{CD})$
Construction: Join DF and produce it to intersect AB produced at G .
Proof : In $\triangle \mathrm{CFD}$ and $\triangle \mathrm{BFG}$, we have

$$
\begin{aligned}
& \mathrm{DC} \| \mathrm{AB} \\
& \angle \mathrm{C}=\angle 3 \\
& \mathrm{CF}=\mathrm{BF} \\
& \angle 1=\angle 2
\end{aligned}
$$

$$
\therefore \quad \angle \mathrm{C}=\angle 3 \quad \text { [Alternate interior angles] }
$$

[Given]
So, by ASA criterion of congruence, we have

$$
\Delta \mathrm{CFD} \cong \Delta \mathrm{BFG}
$$

$\therefore \quad \mathrm{CD}=\mathrm{BG}$
[CPCT]
EF joins mid-points of sides AD and GD respectively
$\therefore \quad \mathrm{EF} \| \mathrm{AG} \quad[\because$ Mid-point theorem $]$
$\Rightarrow \quad \mathrm{EF} \| \mathrm{AB}$
So, $\quad E F=\frac{1}{2} A G$
[Mid-point theorem]
$\Rightarrow \quad \mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{BG})$
$\Rightarrow \quad \mathrm{EF}=\frac{1}{2}(\mathrm{AB}+\mathrm{CD})$
Hence, proved.
13. Prove that the quadrilateral formed by the bisectors of the angles of a parallelogram is a rectangle.
Sol. Given : A parallelogram ABCD in which bisectors of angles A,B,C,D intersect at P, Q, R, S to form a quadrilateral $P Q R S$. To prove : PQRS is a rectangle. Proof: Since ABCD is a parallelogram. Therefore, AB || DC
 Now, $\mathrm{AB} \| \mathrm{DC}$ and transversal AD intersects them at D and A respectively. Therefore,

$$
\begin{align*}
& \angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}\left[\because \text { Sum of consecutive interior angles is } 180^{\circ}\right] \\
\Rightarrow & \frac{1}{2} \angle \mathrm{~A}+\frac{1}{2} \angle \mathrm{D}=90^{\circ} \\
\Rightarrow \quad & \angle \mathrm{DAS}+\angle \mathrm{ADS}=90^{\circ} \tag{1}
\end{align*}
$$

$[\because$ DS and AS are bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{D}$ respectively]
But, in $\triangle \mathrm{DAS}$, we have
$\angle \mathrm{DAS}+\angle \mathrm{ASD}+\angle \mathrm{ADS}=180^{\circ}$
[\because Sum of the angles of a triangle is 180°]
$\Rightarrow \angle 90^{\circ}+\angle \mathrm{ASD}=180^{\circ}$
[Using (1)]
$\Rightarrow \quad \angle \mathrm{ASD}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{PSR}=90^{\circ} \quad[\because \angle \mathrm{ASD}$ and $\angle \mathrm{PSR}$ are vertically opposite angles $\therefore \angle \mathrm{PSR}=\angle \mathrm{ASD}]$
Similarly, we can prove that

$$
\angle \mathrm{SRQ}=90^{\circ}, \angle \mathrm{RQP}=90^{\circ} \text { and } \angle \mathrm{SPQ}=90^{\circ}
$$

Hence, PQRS is a rectangle.
14. P and Q are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD . Show that PQ is bisected at O .
Sol. ABCD is a parallelogram. Its diagonals AC and BD bisect each other at O . PQ passes through the point of intersection O of its diagonal AC and BD.

In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{COQ}$, we have

$$
\angle 3=\angle 4
$$

[Alternate int. $\angle s$]

$$
\begin{aligned}
\mathrm{OA} & =\mathrm{OC} \\
\angle 1 & =\angle 2 \\
\therefore \quad \Delta \mathrm{AOP} & \cong \Delta \mathrm{COQ} \\
\text { So, } \quad \mathrm{OP} & =\mathrm{OQ}
\end{aligned}
$$

[Diagonals of a \|gm bisect each other]
[Vertically opposite angles]
[By ASA Congruence rule]
[CPCT]

Hence, PQ is bisected at O .
15. ABCD is a rectangle in which diagonal BD bisects $\angle \mathrm{B}$. Show that ABCD is a square.
Sol. Given : A rectangle ABCD in which diagonal BD bisects $\angle \mathrm{B}$. To prove : ABCD is a square.
Proof: $\quad D C \| A B$
$[\because$ Opposite sides of a rectangle
 are parallel]
$\Rightarrow \quad \angle 4=\angle 1$
...(1) [Alternate interior angles]
Similarly, $\angle 3=\angle 2$
...(2) [Alternate interior angles]
and
$\angle 1=\angle 2$
[Given]
From equations (1), (2) and (3), we get
$\angle 3=\angle 4$
In $\triangle \mathrm{BDA}$ and $\triangle \mathrm{BDC}$, we have

$$
\begin{aligned}
& \angle 1=\angle 2 \\
& \mathrm{BD}=\mathrm{BD} \\
& \angle 3=\angle 4
\end{aligned}
$$

[Given]
[Common side]
[Proved above]

So, by ASA criterion of congruence, we have

$$
\Delta \mathrm{BDA} \cong \Delta \mathrm{BDC}
$$

$\therefore \quad \mathrm{AB}=\mathrm{BC}$
So, ABCD is a square.
Hence, proved.
16. D, E and F are respectively the mid-points of the sides $A B, B C$ and $C A$ of a triangle ABC . Prove that by joining these mid-points D, E and F , the triangles ABC is divided into four congruent triangles.
Sol. Given : A $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ which is formed by joining the mid-points D, E and F of the sides $A B, B C$ and $C A$ of $\triangle A B C$. To prove : $\triangle \mathrm{DEF} \cong \Delta \mathrm{EDB} \cong \Delta \mathrm{CFE} \cong \triangle \mathrm{FAD}$ Proof : DF joins mid-points of sides AB and $A C$ respectively of $\triangle A B C$.

```
\therefore DF| BC [Mid-point theorem]
DF| BE
```

Similarly, EF ||BD

So, quadrilateral BEFD is a parallelogram.
$\Rightarrow \quad \Delta \mathrm{DEF} \cong \Delta \mathrm{EDB} \quad$...(1) $[\because$ A diagonal of a parallelogram divides it into two congruent triangles]
Similarly, $\triangle \mathrm{DEF} \cong \triangle \mathrm{CFE}$
and $\quad \triangle \mathrm{DEF} \cong \triangle \mathrm{FAD}$
From equations (1), (2) and (3), we get
$\Delta \mathrm{DEF} \cong \Delta \mathrm{EDB} \cong \Delta \mathrm{CFE} \cong \Delta \mathrm{FAD}$
Hence, proved.
17. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to the parallel sides of the trapezium.

Sol.

Given : A trapezium ABCD in which E and F are the mid-points of sides AD and BC respectively.
To prove : $\mathrm{EF}\|\mathrm{AB}\| \mathrm{DC}$
Construction : Join DF and produce it to intersect AB produced at G .
Proof : In $\triangle \mathrm{DCF}$ and $\triangle \mathrm{GBF}$, we have
$\angle 1=\angle 2 \quad$ [Alternate interior angles because $\mathrm{DC}|\mid \mathrm{BG}$]
$\angle 3=\angle 4 \quad$ [Vertically opposite angles]
$\mathrm{CF}=\mathrm{BF} \quad[\because \mathrm{F}$ is the mid-point of BC$]$
So, by AAS criterion of congruence, we have
$\Delta \mathrm{DCF} \cong \Delta \mathrm{GBF}$
$\therefore \quad \mathrm{DF}=\mathrm{GF}$
[CPCT]
In $\triangle \mathrm{DAG}, \mathrm{EF}$ joins mid-points of sides DA and DG respectively.
$\therefore \quad \mathrm{EF} \| \mathrm{AG} \quad$ [Mid-point theorem]
$\Rightarrow \quad \mathrm{EF} \| \mathrm{AB}$
But, $\quad \mathrm{AB} \| \mathrm{DC}$
[Given]
$\therefore \quad \mathrm{EF}\|\mathrm{AB}\| \mathrm{DC}$
Hence, proved.
18. P is the mid-point of the side $C D$ of a parallelogram $A B C D$. A line through C parallel to PA intersects AB at Q and DA produced at R . Prove that $\mathrm{DA}=\mathrm{AR}$ and $\mathrm{CQ}=\mathrm{QR}$.
Sol. ABCD is a parallelogram. P is the mid-point of $\mathrm{CD} . \mathrm{CR}$ which intersects $A B$ at Q is parallel to $A P$.
In $\triangle \mathrm{DCR}, \mathrm{P}$ is the mid-point of CD and $\mathrm{AP} \| \mathrm{CR}$,
$\therefore \mathrm{A}$ is the mid-point of DR , i.e., $\mathrm{AD}=\mathrm{AR}$.
$[\because$ The line drawn through the mid-point of one side of a triangle parallel to another side intersects the third side at its mid-point.]
In $\triangle \mathrm{ARQ}$ and $\triangle \mathrm{BCQ}$, we have

$$
\begin{array}{rlrl}
\mathrm{AR} & =\mathrm{BC} & {[\because \mathrm{AD}=\mathrm{AR} \text { (proved above) and } \mathrm{AD}=\mathrm{BC}]} \\
\angle 1 & =\angle 2 & {[\text { Vertically opposite angles] }} \\
\angle 3 & =\angle 4 & {[\text { Alt. } \angle s]} \\
\therefore \quad \triangle \mathrm{ARQ} & \cong \Delta \mathrm{BCQ} & \text { [By AAS Congruence rule] } \\
& \mathrm{CQ} & =\mathrm{QR} & {[\mathrm{CPCT}]}
\end{array}
$$

Hence, $\mathrm{DA}=\mathrm{AR}$ and $\mathrm{CQ}=\mathrm{QR}$ is proved.

