EXERCISE 10.1

1. $A D$ is a diameter of a circle and $A B$ is a chord. If $A D=34 \mathrm{~cm}, A B=30 \mathrm{~cm}$, the distance of AB from the centre of the circle is
(a) 17 cm
(b) 15 cm
(c) 4 cm
(d) 8 cm .

Sol. Draw $\mathrm{OP} \perp \mathrm{AB}$.
As perpendicular from the centre to a chord bisects the chord, so

$$
\mathrm{AP}=\frac{1}{2} \times \mathrm{AB}=\frac{1}{2} \times 30=15 \mathrm{~cm}
$$

Radius $\mathrm{OA}=\frac{1}{2} \times 34=17 \mathrm{~cm}$
In right $\triangle \mathrm{OPA}$, we have

$$
\begin{aligned}
\mathrm{OP} & =\sqrt{\mathrm{OA}^{2}-\mathrm{AP}^{2}}=\sqrt{(17)^{2}-(15)^{2}} \\
& =\sqrt{289-225}=\sqrt{64}=8 \mathrm{~cm}
\end{aligned}
$$

Hence, (d) is the correct answer.
2. In the given figure, if $O A=5 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$ and $O D$ is perpendicular to $A B$, then $C D$ is equal to
(a) 2 cm
(b) 3 cm
(c) 4 cm
(d) 5 cm

Sol. As perpendicular from the centre to a chord bisects the chord,

$$
\begin{aligned}
\mathrm{AC} & =\frac{1}{2} \times \mathrm{AB}=\frac{1}{2} \times 8=4 \mathrm{~cm} \\
\mathrm{OC} & =\sqrt{\mathrm{OA}^{2}-\mathrm{AC}^{2}}=\sqrt{25-16}=\sqrt{9} \\
\mathrm{OC} & =3 \mathrm{~cm} \\
\mathrm{CD} & =\mathrm{OD}-\mathrm{OC} \\
& =5 \mathrm{~cm}-3 \mathrm{~cm}=2 \mathrm{~cm}
\end{aligned}
$$

Now,
Hence, (c) is the correct answer.
3. If $\mathrm{AB}=12 \mathrm{~cm}, \mathrm{BC}=16 \mathrm{~cm}$ and AB is perpendicular to BC , then the radius of the circle, passing through the points A, B, and C is:
(a) 6 cm
(b) 8 cm
(c) 10 cm
(d) 12 cm

Sol. AB is perpendicular to BC , therefore ABC is a right triangle.
In right $\triangle \mathrm{ABC}$, we have

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}} \\
& =\sqrt{(12)^{2}+(16)^{2}} \\
& =\sqrt{144+256} \\
& =\sqrt{400}=20 \mathrm{~cm} \\
\therefore \quad \text { Radius } & =\frac{1}{2} \times \text { diameter }=\frac{1}{2} \times 20 \mathrm{~cm}=10 \mathrm{~cm}
\end{aligned}
$$

Hence, (c) is the correct answer.
4. In the given figure, if $\angle \mathrm{ABC}=20^{\circ}$, then $\angle \mathrm{AOC}$ is equal to:
(a) 20°
(b) 40°
(c) 60°
(d) 10°

Sol. Arc AC of a circle subtends AOC at the centre O and $A B C$ at a point B on the remaining part of the circle,
$\therefore \quad \angle \mathrm{AOC}=2 \angle \mathrm{ABC}$

Hence, (b) is the correct answer.
5. In the given fig., if AOB is a diameter of the circle and $\mathrm{AC}=\mathrm{BC}, \angle \mathrm{CAB}$ is equal to:
(a) 30°
(b) 60°
(c) 90°
(d) 45°

Sol. As AOB is a diameter of the circle,
$\angle \mathrm{C}=90^{\circ}$
[\because Angle in a semi-circle is 90°]

Now,

 $\mathrm{AC}=\mathrm{BC}$$\therefore \quad \angle \mathrm{A}=\angle \mathrm{B}$

$$
\begin{aligned}
& {[\because \text { Angles opposite to equal sides of a tri }} \\
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \Rightarrow 2 \angle \mathrm{~A}+90^{\circ}=180^{\circ} \\
& \Rightarrow \quad 2 \angle \mathrm{~A}=90^{\circ} \Rightarrow \angle \mathrm{A}=90^{\circ} \div 2=45^{\circ}
\end{aligned}
$$

Hence, (d) is the correct answer.
6. In the given figure, if $\angle \mathrm{OAB}=40^{\circ}$, then $\angle \mathrm{ACB}$ is equal to:
(a) 50°
(b) 40°
(c) 60°
(d) 70°

Sol. In $\triangle \mathrm{OAB}$,

$$
\begin{aligned}
\mathrm{OA}= & \mathrm{OB} \\
\therefore \quad \angle \mathrm{OAB}= & \angle \mathrm{OBA}=40^{\circ} \\
& {[\because \text { Angles opposite to equal sides are equal }] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } \angle \mathrm{AOB}=180^{\circ}-\left(40^{\circ}+40^{\circ}\right)=100^{\circ} \\
& \therefore \quad \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 100^{\circ}=50^{\circ}
\end{aligned}
$$

Hence, (a) is the correct answer.
7. In the given figure, if $\angle \mathrm{DAB}=60^{\circ}$, $\angle \mathrm{ABD}=50^{\circ}$, then $\angle \mathrm{ACB}$ is equal to:
(a) 60°
(b) 50°
(c) 70°
(d) 80°

Sol. In $\triangle \mathrm{ADB}$, we have

$$
\begin{array}{ll}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ} \\
\Rightarrow & 60^{\circ}+50^{\circ}+\angle \mathrm{D}=180^{\circ} \\
\Rightarrow & \angle \mathrm{D}=180^{\circ}-110^{\circ}=70^{\circ} \\
\text { i.e } & \angle \mathrm{ADB}=70^{\circ} \\
\text { Now, } & \angle \mathrm{ACB}=\angle \mathrm{ADB}=70^{\circ}
\end{array}
$$

$[\because$ Angles in the same segment of a circle are equal]
Hence, (c) is the correct answer.
8. ABCD is a cyclic quadrilateral such that $A B$ is a diameter of the circle circumscribing it and $\angle \mathrm{ADC}=140^{\circ}$, then $\angle \mathrm{BAC}$ is equal to:
(a) 80°
(b) 50°
(c) 40°
(d) 30°

Sol.

$$
\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}
$$

$\Rightarrow \quad 140^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\therefore \quad \angle \mathrm{ABC}=180^{\circ}-140^{\circ}=40^{\circ}$
ABCD is a cyclic quadrilateral such that AB is the diameter of the circle circumscribing it.
Now, join AC. $\angle \mathrm{C}=90^{\circ}$
[\because Angle in a semi-circle is a right angle]
In $\triangle \mathrm{ABC}$, we have
$\angle \mathrm{BAC}=180^{\circ}-\left(90^{\circ}+40^{\circ}\right)$
$=50^{\circ}$
Hence, (b) is the correct answer.
9. In the given figure, BC is a diameter of the circle and $\angle \mathrm{BAO}=60^{\circ}$. Then $\angle \mathrm{ADC}$ is equal to:
(a) 30°
(b) 45°
(c) 60°
(d) 120°

Sol. In $\triangle \mathrm{OAB}$, we have

$$
\begin{array}{lll}
& \mathrm{OA}=\mathrm{OB} & \text { [Radii of the same circle] } \\
\therefore & \angle \mathrm{ABO}=\angle \mathrm{BAO} & \text { [Angle opp. to equal sides are equal] }
\end{array}
$$

$\therefore \quad \angle \mathrm{ABO}=\angle \mathrm{BAO}=60^{\circ} \quad$ [Given]
Now, $\angle \mathrm{ADC}=\angle \mathrm{ABC}=60^{\circ}$
$[\because \angle \mathrm{ABC}$ and $\angle \mathrm{ADC}$ are angles in the same segment of a circle, are equal] Hence, $\angle \mathrm{ADC}=60^{\circ}$, so (c) is the correct answer.
10. In the given figure, if $\angle \mathrm{AOB}=90^{\circ}$, $\angle \mathrm{ABC}=30^{\circ}$, then $\angle \mathrm{CAO}$ is equal to:
(a) 30°
(b) 45°
(c) 90°
(d) 60°

Sol. In $\triangle \mathrm{OAB}$, we have

$$
\begin{array}{ccrl}
& \mathrm{OA}=\mathrm{OB} \\
& & & {[\text { Radii of the same circle }]} \\
\therefore & \angle \mathrm{OAB} & =\angle \mathrm{OBA} \\
\therefore & 2 \angle \mathrm{OAB} & =\left(180^{\circ}-\angle \mathrm{AOB}\right) \\
& & =\left(180^{\circ}-90^{\circ}\right)[\because \text { Sum }
\end{array}
$$

of angles of Δ is 180°]
$\Rightarrow \quad \angle \mathrm{OAB}=\frac{1}{2} \times 90^{\circ}=45^{\circ}$
Also, $\angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 90^{\circ}=45^{\circ}$
Now, in $\triangle C A B$, we have
$\angle \mathrm{CAB}=180^{\circ}-(\angle \mathrm{ABC}+\angle \mathrm{ACB})$
$=180^{\circ}-\left(30^{\circ}+45^{\circ}\right)=105^{\circ}$
Now, $\angle \mathrm{CAO}=\angle \mathrm{CAB}-\angle \mathrm{OAB}$
$\Rightarrow \quad \angle \mathrm{CAO}=105^{\circ}-45^{\circ}=60^{\circ}$
Hence, (d) is the correct answer.

EXERCISE 10.2

Write true or false and justify your answer in each of the following:

1. Two chords AB and CD of a circle are each at distances 4 cm from the centre. Then $A B=C D$.
Sol. We know that chords equidistant from the centre of a circle are equal. Here we are given that two chords AB and CD of a circle are each at distance 4 cm (equidistant) from the centre of a circle. So, chords are equal, i.e., $\mathrm{AB}=\mathrm{CD}$.
Hence, the given statement is true.
2. Two chords AB and AC of a circle with centre O are on the opposite sides of OA . Then $\angle \mathrm{OAB}=\angle \mathrm{OAC}$.

Sol. The given statement is false, because the angles will be equal if $\mathrm{AB}=\mathrm{AC}$.
3. Two congruent circles with centres O and O^{\prime} intersect at two points A and B . Then $\angle \mathrm{AOB}=\angle \mathrm{AO}^{\prime} \mathrm{B}$.

Sol. The given statement is true because equal chords of congruent circles subtend equal angles at the respective centres.
4. Through three collinear points a circle can be drawn.

Sol. The given statement is false because a circle through two points cannot pass through a point which is collinear to these two points.
5. A circle of radius 3 cm can be drawn through two points A, B such that $\mathrm{AB}=6 \mathrm{~cm}$.
Sol. Radius of circle $=3 \mathrm{~cm}$,
\therefore Diameter of circle $=2 \times r=2 \times 3 \mathrm{~cm}=6 \mathrm{~cm}$
Now, $\mathrm{AB}=6 \mathrm{~cm}$, so the given statement is true because AB will be the diameter.
6. If AOB is a diameter of a circle and C is a point on the circle, then $\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2}$.
Sol. AOB is a diameter of a circle and C is a point on the circle.
$\therefore \quad \angle \mathrm{ACB}=90^{\circ} \quad[\because$ Angle in a semicircle is a right angle $]$ In right $\triangle \mathrm{ABC}$,

$$
\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{AB}^{2} \quad[\mathrm{By} \text { Pythagoras theorem }]
$$

Hence, the given statement is true.
7. ABCD is a cyclic quadrilateral such that $\angle \mathrm{A}=90^{\circ}, \angle \mathrm{B}=70^{\circ}, \angle \mathrm{C}=95^{\circ}$ and $\angle \mathrm{D}=105^{\circ}$.
Sol. We know that opposite angles of a cyclic quadrilateral are supplementary. Here, sum of opposite angles is not $.180^{\circ}$

$$
\angle \mathrm{A}+\angle \mathrm{C}=90^{\circ}+95^{\circ}=185^{\circ}
$$

Hence, ABCD is not a cyclic quadrilateral. The given statement is false.
8. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four point such that $\angle \mathrm{BAC}=30^{\circ}$ and $\angle \mathrm{BDC}=60^{\circ}$, then D is the centre of the circle through A, B and C .
Sol. The given statement is false because there can be many points D such that $\angle \mathrm{BDC}=60^{\circ}$ and each such point cannot be centre of the circle through $\mathrm{A}, \mathrm{B}, \mathrm{C}$.
9. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points such that $\angle \mathrm{BAC}=45^{\circ}$ and $\angle \mathrm{BDC}=45^{\circ}$, then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are concyclic.
Sol. The given statement is true, because the two angles $\angle \mathrm{BAC}=45^{\circ}$ and $\angle \mathrm{BDC}=45^{\circ}$ are in the same segment of a circle.
Hence, A, B, C and D are concyclic.
10. In the given figure, if AOB is a diameter and $\angle \mathrm{ADC}=120^{\circ}$, then $\angle \mathrm{CAB}=30^{\circ}$.

Sol. AOB is a diameter of circle with centre O .

$$
\begin{aligned}
& \text { AOB is a diameter of circle with centre } \mathrm{O} . \\
& \angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ} \\
& \quad \because \because \mathrm{ABCD} \text { is a cyclic quardrilateral }] \\
& \Rightarrow 120^{\circ}+\angle \mathrm{ABC}=180^{\circ} \\
& \Rightarrow \\
& \quad \angle \mathrm{ABC}=180^{\circ}-120^{\circ}=60^{\circ} \\
& \text { In } \triangle \mathrm{ABC}, \text { we have } \\
& \quad \angle \mathrm{ACB}=90^{\circ} \\
& \left.\quad\left[\because \text { Angle in a semicircle and } \angle \mathrm{ABC}=60^{\circ} \text { (Proved above }\right)\right]
\end{aligned}
$$

$\therefore \angle \mathrm{CAB}=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}$
Hence, the given statement is true.

EXERCISE 10.3

1. If arcs $A X B$ and CYD of a circle are congruent, find the ratio of chord AB and chord CD .
Sol. We have $\widehat{\mathrm{AXB}} \cong \overparen{\mathrm{CYD}}$ Since if two arcs of a circle are congruent, then their corresponding arcs are equal, so we have chord $\mathrm{AB}=$ chord CD Hence, $\mathrm{AB}: \mathrm{CD}=1: 1$
2. If PQ is the perpendicular bisector
 of a chord $A B$ of a circle PXAQBY intersects the circle at P and Q, prove that $\operatorname{arc} P X A \cong \operatorname{arc} P Y B$.
Sol. As PQ is the perpendicular bisector of AB ,

so
$\mathrm{AM}=\mathrm{BM}$
In $\triangle \mathrm{APM}$ and $\triangle \mathrm{BPM}$, we have
$\mathrm{AM}=\mathrm{BM}$
$\angle \mathrm{AMP}=\angle \mathrm{BMP}$
$\mathrm{PM}=\mathrm{PM}$
$\therefore \quad \triangle \mathrm{APM} \cong \triangle \mathrm{BPM}$
so $\quad \mathrm{AP}=\mathrm{BP}$
[Proved above]
$\left[\right.$ Each $\left.=90^{\circ}\right]$
[Common side]
[By SAS congruence rule]
[CPCT]
Hence, $\operatorname{arc} \mathrm{PXA} \cong \operatorname{arc} \mathrm{PYB}$
[If two chords of a circle are equal, then their corresponding arcs are congruent]
3. A, B and C are three points on a circle. Prove that the perpendicular bisectors of AB, BC and CA are concurrent.
Sol. Given: Three non-collinear points A, B and C are on a circle. To prove: Perpendicular bisectors of AB, BC and CA are concurrent. Construction: Join AB, BC and CA . Draw perpendicular bisectors ST of $A B, P M$ of $B C$ and $Q R$ of $C A$ are respectively. As point $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are not collinear, so ST, PM and QR are not parallel and will intersect.
Proof: \because O lies on ST , the \perp bisector of $A B$

$$
\begin{equation*}
\therefore \quad \mathrm{OA}=\mathrm{OB} \tag{1}
\end{equation*}
$$

Similarly, O lies on PM, the \perp bisector of BC
$\therefore \quad \mathrm{OB}=\mathrm{OC}$
And, O lies on QR , the \perp bisector of CA
$\therefore \quad \mathrm{OC}=\mathrm{OA}$
From (1), (2) and (3), $\quad \mathrm{OA}=\mathrm{OB}=\mathrm{OC}=r$ (say)
With O as a centre and r as the radius, draw circle $\mathrm{C}(\mathrm{O}, r)$ which will pass through A, B and C .

This proves that there is a circle passing through the points A, B and C.
Since ST, PM and QR can cut each other at one and only one point O.
$\therefore \mathrm{O}$ is the only point equidistant from A, B and C .
Hence, the perpendicular bisectors of AB, BC and CA are concurrent.
4. AB and AC are two equal chords of a circle. Prove that the bisector of the angle BAC passes through the centre of the circle.
Sol. Given: AB and AC are two chords which are equal with centre O. AM is the bisector of $\angle \mathrm{BAC}$.

To prove: AM passes through O.
Construction: Join BC. Let AM intersect BC at P . Proof: In $\triangle \mathrm{BAP}$ and $\triangle \mathrm{CAP}$,

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AC} & & {[\text { Given }] } \\
\angle \mathrm{BAP} & =\angle \mathrm{CAP} & & {[\text { Given }] }
\end{aligned}
$$

and $\quad \mathrm{AP}=\mathrm{AP}$.
$\therefore \quad \triangle \mathrm{BAP} \cong \triangle \mathrm{CAP}$
[Common side]
$\therefore \quad \angle \mathrm{BPA}=\angle \mathrm{CPA}$
[By SAS]
and $\quad \mathrm{CP}=\mathrm{PB}$

But $\angle \mathrm{BPA}+\angle \mathrm{CPA}=180^{\circ}[$ Linear pair $\angle s]$
$\therefore \quad \angle \mathrm{BPA}=\angle \mathrm{CPA}=90^{\circ}$
\therefore AP is perpendicular bisector of the chord BC , which will pass through the centre O on being produced.
Hence, AM passes though O.
5. If a line segment joining mid-point of two chords of a circle passes through the centre of the circle, prove that the two chords parallel.
Sol. Given: AB and CD are two chords of a circle whose centre of O. The mid-points of $A B$ and $C D$ are L and M respectively. To prove: $\mathrm{AB} \| \mathrm{CD}$
Proof: \because L is the mid-point of chord $A B$
$\therefore \mathrm{OL} \perp \mathrm{AB}, \quad$ or $\angle \mathrm{ALO}=90^{\circ}$
$[\because$ The line joining the centre of a circle

to the mid-point of a chord is perpendicular to the chord]
Similarly, $\angle \mathrm{CMO}=90^{\circ}$
$\therefore \quad \angle \mathrm{ALO}=\angle \mathrm{CMO}$
But, these are corresponding angles.
So, $A B \| C D$.
Hence, proved.
6. ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D . Prove that $\angle \mathrm{CBD}+\angle \mathrm{CDB}=\frac{1}{2} \angle \mathrm{BAD}$.
Sol. ABCD is such a quadrilateral that A is the centre of the circle passing through B, C and D . We have to prove that

$$
\angle \mathrm{CBD}+\angle \mathrm{CDB}=\frac{1}{2} \angle \mathrm{BAD}
$$

Join AC.
Since angle subtended by an arc at the centre is double the angle subtended by it at point on the remaining part of the circle .

Therefore,	$\angle \mathrm{CAD}=2$	$\angle \mathrm{CBD}$
and	$\angle \mathrm{BAC}=2$	$\angle \mathrm{CDB}$

Adding (1) and (2), we get

$$
\begin{array}{rlr}
& \angle \mathrm{CAD}+\angle \mathrm{BAC}=2(& \angle \mathrm{CBD}+\angle \mathrm{CDB}) \\
\Rightarrow & \angle \mathrm{BAD}=2(& \angle \mathrm{CBD}+\angle \mathrm{CDB})
\end{array}
$$

Hence,

$$
\angle \mathrm{CBD}+\angle \mathrm{CDB}=\quad \frac{1}{2} \angle \mathrm{BAD}
$$

7. O is the circumcentre of the triangle ABC and D is the mid-point of the base $B C$. Prove that $\angle \mathrm{BOD}=\angle \mathrm{A}$.
Sol. Given: O is the circumcentre of $\triangle \mathrm{ABC}$ and $\mathrm{OD} \perp \mathrm{BC}$.
To prove: $\angle \mathrm{BOD}=\angle \mathrm{A}$.
Construction: Join OB and OC.
Proof: $\operatorname{In} \triangle \mathrm{OBD}$ and $\triangle \mathrm{OCD}$, we have

$\mathrm{OB}=\mathrm{OC}[$ Each equal to the radius of the circumcircle

$$
\begin{array}{llr}
& \angle \mathrm{ODB}=\angle \mathrm{ODC} & \text { [Each equal to } 90^{\circ} \text {] } \\
\therefore & \angle \mathrm{OD}=\mathrm{OD} & \text { [Common] } \\
\Rightarrow & \angle \mathrm{OBD} \cong \angle \mathrm{OCD} & \\
\Rightarrow & \angle \mathrm{BOD}=2 \angle \mathrm{COD} &
\end{array}
$$

Now, arc BC subtends $\angle \mathrm{BOC}$ at the centre and $\angle \mathrm{BAC}=\angle \mathrm{A}$ at a point in the remaining part of the circle.

$$
\therefore \quad \angle \mathrm{BOC}=2 \angle \mathrm{~A}
$$

$\Rightarrow \quad 2 \angle \mathrm{BOD}=2 \quad \angle \mathrm{~A} \quad[\because \angle \mathrm{BOC}=2 \angle \mathrm{BOD}]$
$\Rightarrow \quad \angle \mathrm{BOD}=\angle \mathrm{A}$
Hence, proved.
8. On a common hypotenuse AB , two right triangles ACB and ADB are situated on opposite sides. Prove that $\angle \mathrm{BAC}=\angle \mathrm{BDC}$.
Sol. In right triangles ACB and ADB, we have $\angle \mathrm{ACB}=90^{\circ}$ and $\angle \mathrm{ADB}=90^{\circ}$ $\therefore \quad \angle \mathrm{ACB}+\angle \mathrm{ADB}=90^{\circ}+90=180^{\circ}$ If the sum of any pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic. So, ADBC is a cyclic quadrilateral. Join CD. Angles $\angle \mathrm{BAC}$ and $\angle \mathrm{BDC}$ are made by $\overparen{B C}$ in the same segment BDAC.

Hence, $\angle \mathrm{BAC}=\angle \mathrm{BDC}$.
[\because Angles in the same segment of a circle are equal]
9. Two chords $A B$ and $A C$ of a circle subtends angles equal to 90° and 150°, respectively at the centre.
Find $\angle \mathrm{BAC}$, if AB and AC lie on the opposite sides of the centre.
Sol. We have

$$
\begin{array}{lrlrl}
& & \text { Reflex } \angle \mathrm{BOC} & =90^{\circ}+150^{\circ}=240^{\circ} \\
\therefore & \angle \mathrm{BOC} & =360^{\circ}-240^{\circ}=120^{\circ} \\
\text { Now, } & \angle \mathrm{BOC} & =2 \angle \mathrm{BAC}
\end{array}
$$

Hence, $\angle \mathrm{BAC}=\frac{1}{2} \angle \mathrm{BOC}=\frac{1}{2} \times 120^{\circ}=60^{\circ}$
10. If $B M$ and $C N$ are the perpendiculars drawn on the sides $A C$ and $A B$ of the triangle ABC , prove that the points $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and N are concyclic.
Sol. As BM and CN are the perpendiculars drawn on the sides $A C$ and $A B$ of the triangle ABC

$$
\therefore \quad \angle \mathrm{BMC}=\angle \mathrm{BNC}=90^{\circ}
$$

Since if a line segment (here BC) joining two points (here B and C) subtends equal angles (here $\angle \mathrm{BMC}$ and $\angle \mathrm{BNC}$) at M and N on the same side of the line (here BC) containing the segment, the four points (here $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and N) are concyclic.
Hence $\mathrm{B}, \mathrm{C}, \mathrm{M}$ and N are concylic.

11. If a line is drawn parallel to the base of an isosceles triangle to intersect its equal sides, prove that quadrilateral so formed is cyclic.

Sol. $\triangle \mathrm{ABC}$ is an isosceles triangle in which $\mathrm{AB}=$ $A C$. $D E$ is drawn parallel to $B C$. We have to prove that quadrilateral BCED is a cyclic quadrilateral i.e., point $\mathrm{B}, \mathrm{C}, \mathrm{E}$ and D lie on a circle.
In $\triangle \mathrm{ABC}$, we have

$$
\mathrm{AB}=\mathrm{AC} \quad[\text { Given }]
$$

$\therefore \quad \angle 1=\quad \angle 2[\because$ Angles opp. to equal sides are equal $]$
Now, $\mathrm{DE} \| \mathrm{BC}$ and AB cuts them,
$\therefore \quad \angle 1+\angle 3=180^{\circ}$
[\because Sum of int. $\angle s$ on the same side of the transversal]
$\Rightarrow \quad \angle 2+\angle 3=180^{\circ}$
Similarly, we can show that $\angle 1+\angle 4=180^{\circ}$

Since if pair of opposite angles of a quadrilateral is supplementary , then the quadrilateral is cyclic.
Hence, BCED is a cyclic quadrilateral.
12. If a pair of opposite sides of a cyclic quadrilateral are equal, prove that its diagonals are also equal.
Sol. ABCD is cyclic quadrilateral in which one pair of opposite sides $\mathrm{AB}=\mathrm{DC}$. We have to prove that diagonal $\mathrm{AC}=$ diagonal BD .
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{DOC}$, we have

$$
\angle 1=\angle 3
$$

[Angles in the same segment of the circle are equal]

$$
\mathrm{AB}=\mathrm{DC}
$$

[Given]
Also, $\quad \angle 2=\angle 4 \quad$ [Same reason as in step - 1]

$$
\begin{align*}
\therefore & \Delta \mathrm{AOB} & \cong \Delta \mathrm{DOC} \\
\therefore & \mathrm{AO} & =\mathrm{OD}[\mathrm{CPCT}] \tag{1}\\
\text { and } & \mathrm{OC} & =\mathrm{BO} \tag{2}
\end{align*}
$$

Now, adding (1) and (2), we get

$$
\mathrm{AO}+\mathrm{OC}=\mathrm{BO}+\mathrm{OD}
$$

$$
\Rightarrow \quad \mathrm{AC}=\mathrm{BD}
$$

Hence, proved.
13. The circumcentre of the triangle ABC is O . Prove that $\angle \mathrm{OBC}+\angle \mathrm{BAC}=90^{\circ}$
Sol. ABC is a triangle and O is its circumcentre.
Draw $\mathrm{OD} \perp \mathrm{BC}$. Join OB and OC .
In right $\triangle \mathrm{OBD}$ and right $\triangle \mathrm{OCD}$, we have
hyp. $\mathrm{OB}=$ hyp. OC
[Radii of the same circle]

$$
\mathrm{OD}=\mathrm{OD}
$$

[Common side]

$$
\begin{array}{lrr}
\therefore & \Delta \mathrm{OBD} \cong \triangle \mathrm{OCD} & \text { [By RHS cong. rule] } \\
\therefore & \angle 1=\angle 2 \text { and } \angle 3=\angle 4 & \\
\text { Now, } \angle \mathrm{BOC}=2 \angle 1 \text { and } \angle \mathrm{BOC}=2 \angle \mathrm{~A} & \\
\therefore & 2 \angle 1=2 \angle \mathrm{~A} \Rightarrow \angle 1=\angle \mathrm{A} & \\
\therefore & \angle \mathrm{~A}=\angle 2 & \\
\Rightarrow & \angle \mathrm{~A}+\angle 4=\angle 2+\angle 4 & \\
\Rightarrow & \angle \mathrm{~A}+\angle 3=90^{\circ} & \text { [Adding } \angle \because \angle 4 \text { to both sides] } \\
\Rightarrow & \angle \mathrm{OBC}+\angle \mathrm{A}=90^{\circ} & {\left[\because \angle 2+\angle 4=90^{\circ} \text { and } \angle 4=\angle 3\right. \text {] }}
\end{array}
$$

Hence, proved.
14. A chord of a circle is equal to its radius. Find the angle subtended by this chord at a point in major segment.
Sol. Since chord of a circle is equal to radius, so we have $A B=O A=O B$. Therefore, ABC is an equilateral triangle.

Since each angle of an equilateral triangle is 60°, so we have $\angle \mathrm{AOB}=60^{\circ}$ Since angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle, so we have

$$
\angle \mathrm{AOB}=2 \angle \mathrm{ACB}
$$

Hence, $\quad \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{AOB}=\frac{1}{2} \times 60^{\circ}=30^{\circ}$
15. In the given figure, $\angle \mathrm{ADC}=130^{\circ}$ and chord $\mathrm{BC}=$ chord BE . Find $\angle \mathrm{CBE}$.

Sol. In the given figure, we have $\angle \mathrm{ADC}=130^{\circ}$ and chord $\mathrm{BC}=$ chord BE . We have to find $\angle \mathrm{CBE}$. Since ABCD is a cyclic quadrilateral and the opposite angles of a cyclic quadrilateral are supplementary.
$\therefore \quad \angle \mathrm{D}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \quad 130^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{ABC}=180^{\circ}-130^{\circ}=50^{\circ}$
$\Rightarrow \quad \angle \mathrm{OBC}=50^{\circ}$
In $\triangle \mathrm{OBC}$ and $\triangle \mathrm{OBE}$, we have

$$
\begin{array}{lr}
\mathrm{BC}=\mathrm{BE} & \text { [Given] } \tag{1}\\
\mathrm{OC}=\mathrm{OE} & \text { [Radii of same circle] } \\
\mathrm{OB}=\mathrm{OB} & {[\text { Common side] }}
\end{array}
$$

$\therefore \quad \triangle \mathrm{OBC} \cong \triangle \mathrm{OBE} \quad[\mathrm{By} \mathrm{SSS}$ cong. rule]
$\therefore \quad \angle \mathrm{OBC}=\angle \mathrm{OBE}=50^{\circ} \quad\left[\mathrm{CPCT}\right.$ and by $\left.(1) \angle \mathrm{OBC}=50^{\circ}\right]$
$\therefore \quad \angle \mathrm{OBC}+\angle \mathrm{OBE}=50^{\circ}+50^{\circ}=100^{\circ}$
Hence, $\angle \mathrm{CBE}=100^{\circ}$.
16. In the given figure, $\angle \mathrm{ACB}=40^{\circ}$. Find $\angle \mathrm{OAB}$.

Sol. Since the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle, so we have

$$
\angle \mathrm{AOB}=2 \angle \mathrm{ACB}=2 \times 40^{\circ}=80^{\circ}
$$

So, in $\triangle \mathrm{OAB}$, we have

$$
\begin{aligned}
& p^{\circ}+p^{\circ}+\angle \mathrm{AOB}=180^{\circ} \\
& \Rightarrow \quad 2 p^{\circ}+80^{\circ}=180^{\circ} \Rightarrow 2 p^{\circ}=180^{\circ}-80^{\circ} \\
& \Rightarrow \quad 2 p^{\circ}=100^{\circ} \Rightarrow p^{\circ}=100^{\circ} \div 2=50^{\circ} \\
& \text { Hence, } \quad \angle \mathrm{OAB}=50^{\circ}
\end{aligned}
$$

17. A quadrilateral $A B C D$ is inscribed in a circle such that $A B$ is diameter and $\angle \mathrm{ADC}=130^{\circ}$. Find $\angle \mathrm{BAC}$.
Sol. Since the opposite angles of a cyclic quadrilateral are supplementary.

$$
\begin{array}{ll}
\therefore & \angle \mathrm{B}+\angle \mathrm{D}=180^{\circ} \\
\Rightarrow & \angle \mathrm{B}+130^{\circ}=180^{\circ}
\end{array}
$$

$$
\Rightarrow \quad \angle \mathrm{B}=180^{\circ}-130^{\circ}=50^{\circ}
$$

Now, in $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}[\because$ Angle in a semi-circle $\left.=90^{\circ}\right]$ and $\quad \angle \mathrm{ABC}=50^{\circ}$
$\therefore \quad \angle \mathrm{BAC}=180^{\circ}-\left(90^{\circ}+50^{\circ}\right)$
$=180^{\circ}-140^{\circ}=40^{\circ}$
18. Two circles with centre O and O^{\prime} intersect at two points A and B . A line PQ is drawn parallel to OO^{\prime} through A (or B) intersecting the circles at P and Q . Prove that $\mathrm{PQ}=2 \mathrm{OO}^{\prime}$

Sol. Two circles with centre O and O^{\prime} intersect at two points A and B . A line PQ is drawn parallel to OO^{\prime} through A (or B) intersecting the circles at P and Q .
Draw $\mathrm{OC} \perp \mathrm{PA}$ and $\mathrm{O}^{\prime} \mathrm{D} \perp \mathrm{AQ}$.
We have to prove that $\mathrm{PQ}=2 \mathrm{OO}^{\prime}$.
Since perpendicular from the centre to a chord bisects the chord, so

$$
\begin{align*}
\mathrm{PA} & =2 \mathrm{CA} \tag{1}\\
\mathrm{AQ} & =2 \mathrm{AD} \tag{2}
\end{align*}
$$

Adding (1) and (2), we get

$$
\begin{array}{rlrl}
& & \mathrm{PA}+\mathrm{AQ} & =2 \mathrm{CA}+2 \mathrm{AD} \\
\Rightarrow & \mathrm{PQ} & =2(\mathrm{CA}+\mathrm{AD})=2 \mathrm{CD}
\end{array}
$$

Hence, $\mathrm{PQ}=2 \mathrm{OO}^{\prime} \quad\left[\because \mathrm{CD}\right.$ and OO^{\prime} are opposite sides of a rectangle $]$
19. In the given figure, AOB is a diameter of the circle and $\mathrm{C}, \mathrm{D}, \mathrm{E}$ are any three points on the semi-circle. Find the value of $\angle A C D+\angle B E D$.
Sol. Join BC.
Since angle in a semicircle is 90°, we have

$$
\angle \mathrm{ACB}=90^{\circ}
$$

As BCDE is a cyclic quadrilateral and opposite angles of a cyclic quadrilateral are supplementary

$$
\therefore \quad \angle \mathrm{BCD}+\angle \mathrm{BED}=180^{\circ}
$$

Now, adding $\angle \mathrm{ACB}$ to both sides, we get

$$
(\angle \mathrm{BCD}+\angle \mathrm{ACB})+\angle \mathrm{BED}=180^{\circ}+\angle \mathrm{ACB}
$$

Hence, $\angle \mathrm{ACD}+\angle \mathrm{BED}=180^{\circ}+90^{\circ}=270^{\circ}$
20. In thje given figure, $\angle \mathrm{OAB}=30^{\circ}$ and $\angle \mathrm{OCB}=57^{\circ}$. Find $\angle \mathrm{BOC}$ and $\angle \mathrm{AOC}$.

Sol. In $\Delta \mathrm{OBC}$, we have

$$
\begin{array}{lcc}
& \mathrm{OB}=\mathrm{OC} & \text { [Radii of the same circle }] \\
\therefore & \angle \mathrm{OCB}=\angle \mathrm{OBC}=57^{\circ} & {\left[\because \angle \mathrm{OCB}=57^{\circ}(\text { (Given })\right]}
\end{array}
$$

Now, in $\triangle \mathrm{BOC}$, we have

$$
\begin{array}{rlrl}
& & \angle \mathrm{OCB}+\angle \mathrm{OBC}+\angle \mathrm{BOC} & =180^{\circ} \\
\Rightarrow & 57^{\circ}+57^{\circ}+\angle \mathrm{BOC} & =180^{\circ} \\
\Rightarrow & 114^{\circ}+\angle \mathrm{BOC} & =180^{\circ} \\
\Rightarrow & & \angle \mathrm{BOC} & =180^{\circ}-114^{\circ}=66^{\circ}
\end{array}
$$

Again, in $\triangle A O B$, we have

$$
\angle \mathrm{OAB}+\angle \mathrm{OBA}+\angle \mathrm{AOB}=180^{\circ}
$$

$$
\Rightarrow 30^{\circ}+30^{\circ}+(\angle \mathrm{AOC}+\angle \mathrm{BOC})=180^{\circ}
$$

$$
\Rightarrow \quad 60^{\circ}+\angle \mathrm{AOC}+66^{\circ}=180^{\circ}
$$

$$
\Rightarrow \quad \angle A O C=180^{\circ}-126^{\circ}=54^{\circ}
$$

Hence, $\angle \mathrm{BOC}=66^{\circ}$ and $\angle \mathrm{AOC}=54^{\circ}$.

EXERCISE 10.4

1. If two equal chords of a circle intersect, prove that the parts of one chord are separately equal to the parts of the other chord.
Sol. AB and CD are two equal chords of a circle with centre O, intersect each other at M.
We have to prove that,
(i) $\mathrm{MB}=\mathrm{MC}$ and
(ii) $\mathrm{AM}=\mathrm{MD}$

AB is a chord and $\mathrm{OE} \perp$ to it from the centre O ,
$\therefore \quad \mathrm{AE}=\frac{1}{2} \mathrm{AB}$

$[\because$ Perpendicular from the centre to a chord bisects the chord]
Similarly,

$$
\mathrm{FD}=\frac{1}{2} \mathrm{CD}
$$

As

$$
\begin{align*}
& \mathrm{AB}=\mathrm{CD} \quad \Rightarrow \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{CD} \tag{Given}\\
& \mathrm{AE}=\mathrm{FD} \tag{1}
\end{align*}
$$

so
Since equal chords are equidistant from the centre,
so $\quad \mathrm{OE}=\mathrm{OF} \quad[\because \mathrm{AB}=\mathrm{CD}]$
Now, in right \triangle MOE and MOF,

$$
\begin{array}{rlrl}
\text { hyp. OE } & =\text { hyp. OF } \\
& & \mathrm{OM} & =\mathrm{OM} \\
\therefore & \Delta \mathrm{MOE} & \cong \Delta \mathrm{MOF} \\
\therefore & \mathrm{ME} & =\mathrm{MF} \tag{2}
\end{array}
$$

[Proved above]
[Common side]

Subtracting (2) from (1), we get

$$
\mathrm{AE}-\mathrm{ME}=\mathrm{FD}-\mathrm{MF}
$$

$\Rightarrow \quad A M=M D$
Again,
and
$\mathrm{AB}=\mathrm{CD}$
$\mathrm{AM}=\mathrm{MD}$
[Proved part (ii)]
[Given]
[Proved]
$\therefore \quad \mathrm{AB}-\mathrm{AM}=\mathrm{CD}-\mathrm{MD} \quad[$ Equals subtracted from equal]
Hence,
$M B=M C$
[Proved part (i)]
2. If non-parallel sides of a trapezium are equal, prove that it is cyclic.

Sol. Given: ABCD is a trapezium in which $\mathrm{AD} \| \mathrm{BC}$ and its non-parallel sides AB and DC are equal i.e.,

$$
\mathrm{AB}=\mathrm{DC}
$$

To prove: Trapezium ABCD is cyclic.
Construction: Draw AM and DN $\perp \mathrm{s}$ on BC .
Proof: In right Δs AMB and DNC,

$$
\begin{aligned}
\angle \mathrm{AMB} & =\angle \mathrm{DNC} & & {\left[\text { Each } 90^{\circ}\right] } \\
\mathrm{AB} & =\mathrm{DC} & & {[\text { Given }] } \\
\mathrm{AM} & =\mathrm{DN} & &
\end{aligned}
$$

[\perp distance between two $\|$ lines are same]
$\therefore \quad \triangle \mathrm{AMB} \cong \triangle \mathrm{DNC} \quad[$ By RHS congruence rule]
$\therefore \quad \angle B=\angle C$
[CPCT]
and $\quad \angle 1=\angle 2$

$$
\begin{aligned}
\therefore \quad \angle \mathrm{BAD} & =\angle 1+90^{\circ} \\
& =\angle 2+90^{\circ} \\
& =\angle \mathrm{CDA}
\end{aligned} \quad[\because \angle 1=\angle 2 \text { (Proved above) }]
$$

Now, in quadrilateral ABCD

$$
\begin{aligned}
& \angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{CDA}+\angle \mathrm{BAD}=360^{\circ} \\
& \Rightarrow \angle \mathrm{B}+\angle \mathrm{B}+\angle \mathrm{CDA}+\angle \mathrm{CDA}=360^{\circ} \\
& {[\because \angle \mathrm{B}=\angle \mathrm{C} \text { and } \angle \mathrm{CDA}=\angle \mathrm{BAD}(\text { Proved above })] }
\end{aligned}
$$

$\Rightarrow 2(\angle \mathrm{~B}+\angle \mathrm{CDA})=360^{\circ}$
$\Rightarrow \quad \angle \mathrm{B}+\angle \mathrm{CDA}=180^{\circ}$
We know that if the sum of any pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.
Hence, the trapezium ABCD is cyclic.
3. If P, Q and R are the mid-points of the sides $B C, C A$ and $A B$ of a triangle and AD is the perpendicular from A to BC , prove that $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and D are concyclic.
Sol. We have to prove that R , D, P and Q are concyclic.
Join RD, QD, PR and PQ.
$\because \mathrm{RP}$ joins R and P , the mid-point of $A B$ and $B C$.
$\therefore \mathrm{RP} \| \mathrm{AC}$ [Mid-point theorem]

Similarly, $\mathrm{PQ} \| \mathrm{AB}$.
$\therefore \quad$ ARPQ is a $\|$ gm
so $\quad \angle \mathrm{RAQ}=\angle \mathrm{RPQ}$
[Opposite angles of a || gm]...(1)
$\because \mathrm{ABD}$ is a $\mathrm{rt} . \angle d \Delta$ and DR is a median,
$\therefore \quad \mathrm{RA}=\mathrm{DR}$ and $\angle 1=\angle 2$
Similarly $\angle 3=\angle 4$
Adding (2) and (3), we get

$$
\begin{aligned}
\angle 1+\angle 3 & =\angle 2+\angle 4 \\
\Rightarrow \quad \angle \mathrm{RDQ} & =\angle \mathrm{RAQ} \\
& =\angle \mathrm{RPQ}
\end{aligned}
$$

Hence R, D, P and Q are concyclic.
$[\because \angle \mathrm{D}$ and $\angle \mathrm{P}$ are subtended by RQ on the same side of it.]
4. ABCD is a parallelogram. A circle through A, B is so drawn that it intersects $A D$ at P and $B C$ at Q . Prove that $\mathrm{P}, \mathrm{Q}, \mathrm{C}$ and D are concyclic.
Sol. ABCD is a parallelogram. A circle through A, B is so drawn that it intersects AD at P and $B C$ at Q . We have to prove that $\mathrm{P}, \mathrm{Q}, \mathrm{C}$ and D are concyclic. Join PQ.
Now, side AP of the cyclic quadrilateral $A P Q B$ is produced to D.

$\therefore \quad$ Ext. $\angle 1=$ int. opp. $\angle \mathrm{B}$
$\because \mathrm{BA}|\mid \mathrm{CD}$ and BC cuts them
$\therefore \quad \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
[\because Sum of int. $\angle \mathrm{s}$ on the same side of the transversal is 180°] $\angle 1+\angle \mathrm{C}=180^{\circ} \quad[\because \angle 1=\angle \mathrm{B}$ (proved) $]$
or
$\therefore \mathrm{PDCQ}$ is cyclic quadrilateral.
Hence, the points $\mathrm{P}, \mathrm{Q}, \mathrm{C}$ and D are concyclic.
5. Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.
Sol. Given : A $\triangle \mathrm{ABC}$ and l is perpendicular bisector of BC.
To prove : Angle bisector of $\angle \mathrm{A}$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle \mathrm{ABC}$.
Proof: Let the angle bisector of $\angle \mathrm{A}$ intersect circumcircle of $\triangle \mathrm{ABC}$ at D . Join BP and CP .
$\Rightarrow \quad \angle \mathrm{BAP}=\angle \mathrm{BCP}$
[Angles in the same segment are equal]

$\Rightarrow \quad \angle \mathrm{BAP}=\angle \mathrm{BCP}=\frac{1}{2} \angle \mathrm{~A}$
...(1) [AP is bisector of $\angle \mathrm{A}]$
Similarly, we have

$$
\begin{equation*}
\angle \mathrm{PAC}=\angle \mathrm{PBC}=\frac{1}{2} \angle \mathrm{~A} \tag{2}
\end{equation*}
$$

From equations (1) and (2), we have
$\angle \mathrm{BCP}=\angle \mathrm{PBC}$
$\Rightarrow \quad \mathrm{BP}=\mathrm{CP} \quad[\because$ If the angles subtemded by two chords of a circle at the centre are equal, the chords are equal]
$\Rightarrow P$ lies on perpendicular bisector of $B C$.
Hence, angle bisector of $\angle \mathrm{A}$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle \mathrm{ABC}$.
6. If two chords AB and CD of a circle AYDZBWCX intersect at right angles (see figure), prove that arc $\mathrm{CXA}+\operatorname{arc} \mathrm{DZB}=\operatorname{arc} \mathrm{AYD}+\operatorname{arc} \mathrm{BWC}=$ semicircle.
Sol. Given : Chords AB and CD of circle AYDZBWCX intersect at right angles.
To prove : arc CXA $+\operatorname{are} \mathrm{DZB}=$ are $\mathrm{AYD}+\operatorname{arc} \mathrm{BWC}=$ semicircle. Construction : Join AC, AD, BD and BC.
Proof: O is any point inside the circle. Now, consider the chord CA.
The angle subtended by the chord AC at the circumference is $\angle \mathrm{CBA}$. Similarly, the angle subtended by the chord BD at the circumference is $\angle B C D$.

Now, consider the right triangle BOC.
Thus, by angle sum property, we have :

$$
\begin{array}{rlrl}
& & \angle \mathrm{COB}+\angle \mathrm{CBA}+\angle \mathrm{BCD} & =180^{\circ} \\
\Rightarrow & & 90^{\circ}+\angle \mathrm{CBA}+\angle \mathrm{BCD} & =180^{\circ} \\
\Rightarrow & \angle \mathrm{CBA}+\angle \mathrm{BCD} & =180^{\circ}-90^{\circ} \\
\Rightarrow & \angle \mathrm{CBA}+\angle \mathrm{BCD}=90^{\circ}
\end{array}
$$

That is the sum of angle subtended by the arc CXA and the angle subtended by the arc
 $\mathrm{BZD}=90^{\circ}$

$$
\begin{equation*}
\operatorname{arc} \widehat{\mathrm{CXA}}+\operatorname{arc} \widehat{\mathrm{BZD}}=90^{\circ} \tag{1}
\end{equation*}
$$

Now, consider the chord BC.
The angle subtended by the chord BC at the centre is $\angle \mathrm{BAC}$.
Similarly, the angle subtended by the chord AD at the centre is $\angle \mathrm{ACD}$.
Now, consider the right triangle AOC.
Thus, by angle sum property, we have :

$$
\begin{aligned}
& & \angle \mathrm{COA}+\angle \mathrm{BAC}+\angle \mathrm{ACD} & =180^{\circ} \\
\Rightarrow & & 90^{\circ}+\angle \mathrm{BAC}+\angle \mathrm{ACD} & =180^{\circ} \\
\Rightarrow & & \angle \mathrm{BAC}+\angle \mathrm{ACD} & =180^{\circ}-90^{\circ} \\
\Rightarrow & & \angle \mathrm{BAC}+\angle \mathrm{ACD} & =90^{\circ}
\end{aligned}
$$

That is the sum of angle subtended by the are CWB and the angle subtended by the are AYD $=90^{\circ}$

$$
\begin{equation*}
\operatorname{arc} \widehat{\mathrm{CWB}}+\operatorname{arc} \widehat{\mathrm{AYD}}=90^{\circ} \tag{2}
\end{equation*}
$$

From equations (1) and (2), we have

$$
\operatorname{arc} \widehat{\mathrm{CXA}}+\operatorname{arc} \widehat{\mathrm{BZD}}=\operatorname{arc} \widehat{\mathrm{CWB}}+\operatorname{arc} \widehat{\mathrm{AYD}}=90^{\circ}
$$

We know that the are of a circle subtending a right angle at any point of the circle in its alternate segment is a semi-circle.
Thus, we have

$$
\operatorname{arc} \overparen{\mathrm{CXA}}+\operatorname{arc} \widehat{\mathrm{BZD}}=\operatorname{arc} \widehat{\mathrm{CWB}}+\operatorname{arc} \widehat{\mathrm{AYD}}=\text { Semicircle }
$$

Hence, proved.
7. If ABC is equilateral triangle inscribed in a circle and P be any point on a minor arc BC which does not coincide with B or C , prove that PA is angle bisector of $\angle \mathrm{BPC}$.
Sol. Since equal chords of a circle subtends equal angles at the centre, so we have chord $\mathrm{AB}=$ chord AC
[Given]

So

$$
\begin{equation*}
\angle \mathrm{AOB}=\angle \mathrm{AOC} \tag{1}
\end{equation*}
$$

Since the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle,

$$
\begin{equation*}
\therefore \quad \angle \mathrm{APC}=\frac{1}{2} \angle \mathrm{AOC} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\angle \mathrm{APB}=\frac{1}{2} \angle \mathrm{AOB} \tag{3}
\end{equation*}
$$

$\therefore \quad \angle \mathrm{APC}=\angle \mathrm{APB} \quad[$ From (1), (2) and (3)]
Hence, PA is the bisector of $\angle \mathrm{BPC}$.
8. In the given fig., AB and CD are two chords of a circle intersecting each other at point E . Prove that $\angle \mathrm{AEC}=\frac{1}{2}$ (Angle subtended by an $\operatorname{arc} \mathrm{CXA}$ at the centre + angle subtended by an arc DYB at the centre).
Sol. AB and CD are two chords of a circle intersecting each other at point E .
We have to prove that $\angle \mathrm{AEC}=\frac{1}{2}$ (Angle subtended by an arc CXA at thecentre + angle subtended by arc DYB at the centre). Join AC, BC and BD.
Since the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle, Now, arc CXA subtends $\angle \mathrm{AOC}$ at the centre
 and $\angle \mathrm{ABC}$ at the remaining part of the circle, so

$$
\begin{align*}
& \angle \mathrm{AOC}=2 \angle \mathrm{ABC} \tag{1}\\
& \angle \mathrm{BOD}=2 \angle \mathrm{BCD} \tag{2}
\end{align*}
$$

Similarly,
Now, adding (1) and (2), we get

$$
\begin{equation*}
\angle \mathrm{AOC}+\angle \mathrm{BOD}=2(\angle \mathrm{ABC}+\angle \mathrm{BCD}) \tag{3}
\end{equation*}
$$

Since exterior angle of a triangle is equal to the sum of interior opposite angles, so in \triangle CEB we have,

$$
\begin{equation*}
\therefore \quad \angle \mathrm{AEC}=\angle \mathrm{ABC}+\angle \mathrm{BCD} \tag{4}
\end{equation*}
$$

From (3) and (4), we get

$$
\begin{aligned}
\angle \mathrm{AOC}+\angle \mathrm{BOD} & =2 \angle \mathrm{AEC} \\
\angle \mathrm{AEC} & =\frac{1}{2}(\angle \mathrm{AOC}+\angle \mathrm{BOD})
\end{aligned}
$$

Hence, $\angle \mathrm{AEC}=\frac{1}{2}$ (Angle subtended by an arc CXA at the centre + angle subtended by an arc DYB at the centre).
9. If bisectors of opposite angles of a cyclic quadrilateral ABCD intersect the circle, circumscribing it at points P and Q , prove that PQ is a diameter of the the circle.
Sol. The bisectors of opposite angles $\angle \mathrm{A}$ and $\angle \mathrm{C}$ of a cyclic quadrilateral ABCD intersect the circle at the point P and Q , respectively.
We have to prove that PQ is a diameter of the circle.
Join AQ and DQ.
Since opposite angles of a cyclic quadrilateral are supplementary, so in cyclic quadrilateral ABCD , we have

$$
\angle \mathrm{DAB}+\angle \mathrm{DCB}=180^{\circ}
$$

So, $\quad \frac{1}{2} \angle \mathrm{DAB}+\frac{1}{2} \angle \mathrm{DCB}=\frac{1}{2}\left(180^{\circ}\right)$
$\Rightarrow \quad \angle 1+\angle 2=90^{\circ}$
[$\because \mathrm{AP}$ and CQ are the bisectors of $\angle \mathrm{A}$ and $\angle \mathrm{C}$ respectively]
$\therefore \quad \angle 1+\angle 3=90^{\circ} \quad[\because \angle 2=\angle 3]$
$[\because \angle 2$ and $\angle 3$ are angles in the same segment of a circle with chord QD]
$\Rightarrow \quad \angle \mathrm{PAQ}=90^{\circ}$
$\therefore \quad \angle \mathrm{PAQ}$ is in a semi-circle
Hence, PQ is a diameter of circle.
10. A circle has radius $\sqrt{2} \mathrm{~cm}$. It is divided into two segments by a chord of length 2 cm . Prove that the angle subtended by the chord at a point in major segment is 45°.
Sol. A circle with centre O and radius $\sqrt{2} \mathrm{~cm}$. Chord BC, 2 cm long divides the circle into two segments. $\angle \mathrm{BAC}$ lies in the major segment.
We have to prove that $\angle \mathrm{BAC}=45^{\circ}$.
Join OB and OC.

$$
\begin{array}{ll}
& \mathrm{BC}^{2}=(2)^{2}=4=2+2=(\sqrt{2})^{2}+(\sqrt{2})^{2} \\
\Rightarrow \quad & \mathrm{BC}^{2}=\mathrm{OB}^{2}+\mathrm{OC}^{2}
\end{array}
$$

In $\triangle \mathrm{BOC}$, we have

$$
\begin{aligned}
\mathrm{BC}^{2} & =\mathrm{OB}^{2}+\mathrm{OC}^{2} \\
\therefore \quad \angle \mathrm{BOC} & =90^{\circ} \quad[\mathrm{By} \text { converse of Pythagoras theorem }]
\end{aligned}
$$

Now, $\overparen{B C}$ subtends $\angle \mathrm{BOC}$ at the centre O and $\angle \mathrm{BAC}$ at the remaining part of the circle.

$$
\therefore \quad \angle \mathrm{BAC}=\frac{1}{2} \angle \mathrm{BOC}=\frac{1}{2} \times 90^{\circ}=45^{\circ}
$$

Hence, proved.
11. Two equal chords AB and CD of a circle when produced intersect at a point P , prove that $\mathrm{PB}=\mathrm{PD}$.
Sol. Given: AB and CD two equal chords of a circle with centre O when produced intersect at P .
To prove: $\mathrm{PB}=\mathrm{PD}$.
Construction: Draw OR $\perp \mathrm{AB}$ and $\mathrm{OQ} \perp \mathrm{CD}$. Joint OP.
Proof: $\because \mathrm{OR} \perp \mathrm{AB}$ and $\mathrm{OQ} \perp \mathrm{CD}$ from the centre O of circle

$\therefore \mathrm{R}$ is mid-point of AB and Q is the mid-point of CD .
$[\because \perp$ from the centre to a chord bisects the chord]

$$
\begin{align*}
& \ddots & \mathrm{AB} & =\mathrm{CD} \\
& \therefore & \frac{1}{2} \mathrm{AB} & =\frac{1}{2} \mathrm{CD} \\
& \therefore & \mathrm{AR} & =\mathrm{CQ} \text { and } \mathrm{RB}=\mathrm{QD} \tag{1}\\
& \because & \mathrm{AB} & =\mathrm{CD}, \therefore \mathrm{OR}=\mathrm{OQ} \tag{2}
\end{align*}
$$

$[\because$ Equal chords are equidistant from the centre]
Now, in right-angled Δs ORP and OQP, we have

$$
\begin{align*}
\angle \mathrm{ORP} & =\angle \mathrm{OQP} & & {\left[\text { Each } 90^{\circ}\right] } \\
\text { hyp. OP } & =\text { hyp. OP } & & {[\text { Common side }] } \\
\mathrm{OR} & =\mathrm{OQ} & & {[\text { From (2) }] } \\
\mathrm{ORP} & \cong \mathrm{OQP} & & {[\text { By R.H.S. axiom }] } \\
\mathrm{RP} & =\mathrm{QP} & & {[\mathrm{CPCT}] }
\end{align*}
$$

Now, subtracting (1) from (3)

$$
\begin{array}{rlrl}
\mathrm{RP}-\mathrm{RB} & =\mathrm{QP}-\mathrm{QD} \\
\Rightarrow & \mathrm{~PB} & =\mathrm{PD}
\end{array}
$$

Hence, proved.
12. $A B$ and $A C$ are two chords of a circle of radius r such that $A B=2 A C$. If p and q are the distances of AB and AC from the centre, prove that

$$
4 q^{2}=p^{2}+3 r^{2}
$$

Sol. A circle with centre O and radius r in which there are two chords such that $\mathrm{AB}=2 \mathrm{AC}$. $\mathrm{OL} \perp \mathrm{AB}$ and $\mathrm{OM} \perp \mathrm{AC} . \mathrm{OL}=p$ and $\mathrm{OM}=q$. We have to prove that $4 q^{2}=p^{2}+3 r^{2}$ Since perpendicular from the centre to a chord bisects the chord In right $\Delta \mathrm{AOL}$, we have

$$
\begin{aligned}
r^{2} & =\mathrm{AL}^{2}+p^{2} \\
\Rightarrow \quad \mathrm{AL}^{2} & =r^{2}-p^{2}
\end{aligned}
$$

$$
\begin{array}{rlrl}
& \therefore & \left(\frac{1}{2} \mathrm{AB}\right)^{2} & =r^{2}-p^{2} \Rightarrow \frac{1}{4} \mathrm{AB}^{2}=r^{2}-p^{2} \\
\Rightarrow & \mathrm{AB}^{2} & =4\left(r^{2}-p^{2}\right) \\
\Rightarrow & (2 \mathrm{AC})^{2} & =4\left(r^{2}-p^{2}\right) \\
\Rightarrow & 4 \mathrm{AC}^{2} & =4\left(r^{2}-p^{2}\right)
\end{array}
$$

Again, in right $\triangle \mathrm{AOM}$, we have

$$
r^{2}=\mathrm{AM}^{2}+q^{2} \Rightarrow \mathrm{AM}^{2}=r^{2}-q^{2}
$$

Since \perp from the centre to a chord bisects the chord

$$
\begin{array}{ll}
\therefore & \left(\frac{1}{2} \mathrm{AC}\right)^{2}=r^{2}-q^{2} \Rightarrow \frac{1}{4} \mathrm{AC}^{2}=r^{2}-q^{2} \\
\Rightarrow & \mathrm{AC}^{2}=4\left(r^{2}-q^{2}\right) \tag{2}
\end{array}
$$

From (1) and (2), we get

$$
\begin{array}{rlrl}
& & 4\left\{4\left(r^{2}-q^{2}\right)\right\} & =4\left(r^{2}-p^{2}\right) \\
\Rightarrow \quad 4 r^{2}-4 q^{2} & =r^{2}-p^{2} \Rightarrow 4 q^{2}=3 r^{2}+p^{2}
\end{array}
$$

Hence, $4 q^{2}=p^{2}+3 r^{2}$
13. In the given figure, O is the centre of the circle, $\angle \mathrm{BCO}=30^{\circ}$. Find x and y.

Sol. O is the centre of the circle and $\angle \mathrm{BCO}=30^{\circ}$. We have to find the values of x and y.
In right $\triangle \mathrm{OCP}$, we have

$$
\begin{aligned}
& \angle \mathrm{POC}=180^{\circ}-(\angle \mathrm{OPC}+\angle \mathrm{PCO}) \\
\Rightarrow & \angle \mathrm{POC}=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ}
\end{aligned}
$$

$$
\text { Now, } \quad \angle \mathrm{AOD}=90^{\circ}
$$

[Given]

$$
\angle \mathrm{AOD}+\angle \mathrm{DOP}=180^{\circ}
$$

[Angles of a linear pair]
$\therefore \quad \angle \mathrm{DOP}=180^{\circ}-\angle \mathrm{AOD}$

$$
=180^{\circ}-90^{\circ}=90^{\circ}
$$

Now, $\quad \angle \mathrm{COD}=90^{\circ}-\angle \mathrm{POC}=90^{\circ}-60^{\circ}=30^{\circ}$
Since the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle,

$$
\therefore \quad \angle \mathrm{CBD}=\frac{1}{2} \angle \mathrm{COD} \Rightarrow y=\frac{1}{2} \times 30^{\circ}=15^{\circ}
$$

Also,

$$
\angle \mathrm{ABD}=\frac{1}{2} \angle \mathrm{AOD}=\frac{1}{2} \times 90^{\circ}=45^{\circ}
$$

Now, in $\triangle \mathrm{ABP}$, we have $x+\left(45^{\circ}+y\right)+90^{\circ}=180^{\circ}$

$$
\begin{aligned}
\Rightarrow & x+45^{\circ}+15^{\circ}+90^{\circ} & =180^{\circ} \\
\Rightarrow & x & =180^{\circ}-150^{\circ}=30^{\circ}
\end{aligned}
$$

Hence, $x=30^{\circ}$ and $y=15^{\circ}$.
14. In the given figure, O is the centre of the circle, $\mathrm{BD}=\mathrm{OD}$ and $\mathrm{CD} \perp \mathrm{AB}$. Find $\angle \mathrm{CAB}$.
Sol. In $\triangle \mathrm{ODB}$, we have

$$
\begin{array}{rrr}
\mathrm{BD}=\mathrm{OD} & {[\text { Given }]} \\
\therefore & \angle \mathrm{DOB}=\angle \mathrm{DBO} & {[\because \text { Angles opp. to equal sides }} \\
& &
\end{array}
$$

In $\triangle \mathrm{ODP}$ and $\triangle \mathrm{BDP}$, we have

$$
\angle \mathrm{DOP}=\angle \mathrm{DBP} \quad[\because \angle \mathrm{DOB}=\angle \mathrm{DBO}(\text { Proved above })]
$$

$$
\begin{aligned}
& \angle \mathrm{DPO}=\angle \mathrm{DPB} \quad\left[\text { Each }=90^{\circ}\right] \\
& \mathrm{OD}=\mathrm{BD} \quad \text { [Given] } \\
& \therefore \quad \triangle \mathrm{ODP} \cong \triangle \mathrm{BDP} \quad \text { [By AAS congruence rule] } \\
& \therefore \quad \angle \mathrm{ODP}=\angle \mathrm{BDP} \quad . .(1)[\mathrm{CPCT}] \\
& \text { Now, } \quad \mathrm{OD}=\mathrm{OB} \quad \text { [Radii of the same circle] } \\
& \text { and } \\
& O D=B D \\
& \text { [Given] } \\
& \therefore \quad \mathrm{OB}=\mathrm{OD}=\mathrm{BD} \text {, so } \triangle \mathrm{OBD} \text { is equilateral. } \\
& \therefore \quad \angle \mathrm{ODB}=60^{\circ} \\
& \text { [} \because \text { Each angle of an equilateral triangle is } 60^{\circ} \text {] } \\
& \text { Now, } \quad \angle \mathrm{BDP}=\frac{1}{2} \angle \mathrm{ODB} \quad[\operatorname{From}(1)] \\
& \Rightarrow \quad \angle \mathrm{BDP}=\frac{1}{2} \times 60^{\circ}=30^{\circ} \text { or } \angle \mathrm{CDB}=30^{\circ} \\
& \text { Since angles in the same segment of a circle are equal, so we have } \\
& \text { So, } \\
& \angle \mathrm{CAB}=\angle \mathrm{CDB}=30^{\circ}
\end{aligned}
$$

