EXEMPLAR POINT ${ }^{\circ}(\mathbb{S P P}$

A Complete Institute For Students

CREATING AND SETTING EXAMPLES FロR FUTURE...
 X MATHS FULL SYLLABUS TEST

TIME: 2 ½ HOURS
M.M.: 66

SECTION-A

1. After how many places of decimals will the decimal expansion of $\frac{43}{2^{4} \times 5^{3}}$ terminate?
2. Find the zeroes of quadratic polynomial $4 x^{2}-4 x-3$.
3. A circle touches all four sides of quadrilateral $A B C D$ whose sides $A B=18 \mathrm{~cm}, B C=27 \mathrm{~cm}$ and $C D=12$ cm . Find AD.

4. If $2 \operatorname{cosec}^{2} \theta(1-\cos \theta)(1+\cos \theta)=K+2$, find the value of K.
5. If the difference between the circumference and the radius of a circle is 37 cm , then find the radius of circle.
6. A bag contains cards numbered from 1 o 50. A card is drawn from the bag. Find the probability that the number on this card is divisible by 3 and 5.

SECTION-B

7. At an international airport, a plane takes off from give different runways at $3,4,8,12$ and 15 minutes intervals. At 7:30 am, planes took off from all five runways simultaneously. When will give planes take off together again?
8. Find the sum of all two digit odd positive numbers.
9. Find the point on the x-axis which is equidistant from $(2,-5)$ and $(-2,9)$.
10. If $\mathrm{x} \cos \mathrm{A}=1$ and $\tan \mathrm{A}=\mathrm{y}$ prove that $\mathrm{x}^{2}-\mathrm{y}^{2}=1$.
11. Evaluate: $\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\frac{\cos 55^{\circ} \operatorname{cosec} 35^{\circ}}{\tan 5^{\circ} \tan 25^{\circ} \tan 45^{\circ} \tan 65^{\circ} \tan 85^{\circ}}$
12. A lawn is in the form of an equilateral triangle with semi-circles on the outside of the three sides. If the side of the triangle is 28 m . Calculate the cost of putting grass at the rate of Rs. $2.50 \mathrm{per}^{\mathrm{m}}{ }^{2}$.

SECTION-C

13. Show that $7+\sqrt{3}$ is irrational.
14. What should be subtracted from the polynomial $3 x^{3}+10 x^{2}-14 x+9$ if $(3 x-2)$ is a factor of this polynomial.
15. Prove that the parallelogram circumscribing a circle is a rhombus.
16. Prove that the area of an equilateral triangle described on one side of a right angled isosceles triangle is half the area of the equilateral triangle described on the hypotenuse.
17. Two coins are tossed simultaneously find the probability of getting:
a. Two heads
b. at least one head
c. no head
18. Find the mode of the given data.

Marks obtained	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$	$75-85$
No. of students	7	31	33	17	11	1

19. Prove: $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$.

Or
$(\sin A+\sec A)^{2}+(\cos A+\operatorname{cosec} A)^{2}=(1+\sec A \operatorname{cosec} A)^{2}$.
20. Find the number of terms of the A.P. 18, 15.5, 13, -49.5 .

SECTION-D

21. Solve for x and $y: \frac{57}{x+y}+\frac{6}{x-y}=5 ; \frac{38}{x+y}+\frac{21}{x-y}=9$
22. Prove that the ratio of areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.
23. The angles of depression of the top and bottom of a 12 m tall building from the top of a multistoried building are 30° and 60° respectively. Find the height of the multistoried building.
24. Determine the ratio in which $2 x+3 y-30=0$ divides the line segment $A(3,4)$ and $B(7,8)$ and find the coordinates of that point.
25. Find the median using more than and less than ogive.

| Class | $140-160$ | $160-180$ | $180-200$ | $200-220$ | $220-240$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 15 | 29 | 8 | 12 | 14 |

36. In a flight of 600 km , a aircraft was slowed down due to bad weather. Its average speed for the trip was reduced by $200 \mathrm{~km} / \mathrm{hr}$ and the time of flight increased by 30 minutes. Find the duration of flight.
