EXERCISE 7.1

Choose the correct answer from the given four options:
Q1. The distance of the point $\mathrm{P}(2,3)$ from x-axis is
(a) 2
(b) 3
(c) 1
(d) 5

Sol. (b): The perpendicular distance of $\mathrm{P}(2,3)$ from x-axis is equal to the y coordinate so, it
 is 3 units. verifies ans. (b).
Q2. The distance between the points $\mathrm{A}(0,6)$ and $\mathrm{B}(0,-2)$ is
(a) 6
(b) 8
(c) 4
(d) 2

Sol. (b): $\quad \mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
=\sqrt{(0-0)^{2}+(-2-6)^{2}}=\sqrt{0+(-8)^{2}}=\sqrt{64}
$$

$\Rightarrow \quad \mathrm{AB}=8$ units
Hence, verifies Ans (b).
Q3. The distance of the point $\mathrm{P}(-6,8)$ from the origin is
(a) 8
(b) $2 \sqrt{7}$
(c) 10
(d) 6

Sol. (c): Coordinates of origin are $\mathrm{O}(0,0)$ and $\mathrm{P}(-6,8)$

$$
\begin{aligned}
\therefore \quad(\mathrm{OP})^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(-6-0)^{2}+(8-0)^{2}=36+64 \\
\Rightarrow \quad \mathrm{OP} & =\sqrt{100} \\
\Rightarrow \quad \mathrm{OP} & =10 \text { units. verifies ans. }(c) .
\end{aligned}
$$

Q4. The distance between the points $(0,5)$ and $(-5,0)$ is
(a) 5
(b) $5 \sqrt{2}$
(c) $2 \sqrt{5}$
(d) 10

Sol. (b): Let $\mathrm{A}(0,5)$ and $\mathrm{B}(-5,0)$ are the two points.
Then,

$$
\begin{aligned}
\mathrm{AB}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(-5-0)^{2}+(0-5)^{2}=25+25
\end{aligned}
$$

$\Rightarrow \quad \mathrm{AB}^{2}=50$
$\Rightarrow \quad \mathrm{AB}=5 \sqrt{2}$ units. verifies ans. (b).
Q5. AOBC is a rectangle whose three vertices are $\mathrm{A}(0,3), \mathrm{O}(0,0)$, and $B(5,0)$. The length of its diagonal is
(a) 5
(b) 3
(c) $\sqrt{34}$
(d) 4

Sol. (c): A $(0,3)$ and $B(5,0)$
The length of diagonal $=A B$

$$
\begin{aligned}
\mathrm{AB}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(5-0)^{2}+(0-3)^{2} \\
& =25+9 \\
\Rightarrow \quad \mathrm{AB} & =\sqrt{34} \text { verifies Ans. (c). }
\end{aligned}
$$

Q6. The perimeter of a triangle with vertices $(0,4),(0,0)$, and $(3,0)$ is
(a) 5
(b) 12
(c) 11
(d) $7+\sqrt{5}$

Sol. (b): Perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$
Let $A(0,4), B(0,0), C(3,0)$ be the three vertices of $\triangle A B C$.

$$
\begin{array}{rlrl}
& & \mathrm{AB}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& & & =(0-0)^{2}+(0-4)^{2}=0+16 \\
\Rightarrow & & \mathrm{AB} & =\sqrt{16}=4 \mathrm{~cm} \\
\Rightarrow & \mathrm{AC}^{2} & =(3-0)^{2}+(0-4)^{2}=9+16 \\
\Rightarrow & \mathrm{AC}^{2} & =25 \\
\Rightarrow & \mathrm{AC} & =5 \mathrm{~cm} \\
\Rightarrow & \mathrm{BC}^{2} & =(3-0)^{2}+(0-0)^{2}=9+0 \\
\Rightarrow & \mathrm{BC}^{2} & =9 \\
& \mathrm{BC} & =3 \mathrm{~cm}
\end{array}
$$

$$
\therefore \quad \text { Perimeter }=4 \mathrm{~cm}+5 \mathrm{~cm}+3 \mathrm{~cm}=12 \mathrm{~cm}
$$

Hence, verifies Ans. (b).
Q7. The area of triangle with vertices $A(3,0), B(7,0)$, and $C(8,4)$ is
(a) 14
(b) 28
(c) 8
(d) 6

Sol. (c): Area (A) of $\triangle A B C$ whose vertices are $A(3,0), B(7,0)$ and $C(8,4)$ is given by

$$
\text { Area of } \begin{aligned}
\triangle \mathrm{ABC} & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[3(0-4)+7(4-0)+8(0-0)] \\
& =\frac{1}{2}[-12+28+0]=\frac{1}{2}[16]=8 \text { sq.units }
\end{aligned}
$$

Hence, verifies the Ans. (c).
Q8. The points $(-4,0),(4,0)$ and $(0,3)$ are the vertices of a
(a) right triangle
(b) isosceles triangle
(c) equilateral triangle
(d) scalene triangle

Sol. (b): Let the vertices of $\triangle \mathrm{ABC}$ are $\mathrm{A}(-4,0), \quad \mathrm{B}(4,0)$ and $\mathrm{C}(0,3)$.

$$
\begin{array}{rlrl}
& & \mathrm{AB}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
\Rightarrow & \mathrm{AB}^{2} & =[4-(-4)]^{2}+(0-0)^{2}=64+0=64 \\
\Rightarrow & \mathrm{AB} & =8 \mathrm{~cm} \\
& \mathrm{AC}^{2} & =[0-(-4)]^{2}+(3-0)^{2}=16+9=25
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AC}^{2}=25 \\
\Rightarrow & \mathrm{AC}=5 \mathrm{~cm} \\
\Rightarrow & \mathrm{BC}^{2}=(0-4)^{2}+(3-0)^{2}=16+9=25 \\
\Rightarrow & \mathrm{BC}^{2}=25 \\
\therefore & \mathrm{BC}=5 \mathrm{~cm} \\
\therefore & \mathrm{AC}
\end{array}
$$

Hence, the triangle is an isosceles triangle. So, verifies ans. (b).
Q9. The point which divides the line segment joining the points $(7,-6)$ and $(3,4)$ in ratio $1: 2$ internally lies in the
(a) Ist quadrant
(b) IInd quadrant
(c) IIIrd quadrant
(d) IVth quadrant

Sol. (d):

$$
\begin{array}{clll}
\mathrm{A} \bullet & m_{1}=1 & \mathrm{P}(x, y) & \\
\mathrm{A}\left(x_{1} y_{1}\right) & & m_{2}=2 & \mathrm{~B}\left(x_{2} y_{2}\right) \\
\mathrm{A}(7,-6) & & & \mathrm{B}(3,4) \\
& & & \\
& & & \\
& & & \\
& &
\end{array}
$$

$$
x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}
$$

$\Rightarrow \quad x=\frac{1(3)+2(7)}{1+2}=\frac{3+14}{3}$
$y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}$
$y=\frac{1(4)+2(-6)}{1+2}=\frac{4-12}{3}$
$\Rightarrow \quad x=\frac{17}{3}$
$\mathrm{P}\left(\frac{17}{3}, \frac{-8}{3}\right)$ verifies the Ans. (d).
Q10. The point which lies on the perpendicular bisector of the line segment joining the points $A(-2,-5)$ and $B(2,5)$ is
(a) $(0,0)$
(b) $(0,2)$
(c) $(2,0)$
(d) $(-2,0)$

Sol. (a): The perpendicular bisector of AB will pass through the mid- point of AB . Mid-point of $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is given by $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

$$
=\left(\frac{-2+2}{2}, \frac{-5+5}{2}\right)=(0,0)
$$

So, the perpendicular bisector passes through $(0,0)$.
Q11. The fourth vertex D of a parallelogram ABCD whose three vertices are $A(-2,3), B(6,7)$, and $C(8,3)$ is
(a) $(0,1)$
(b) $(0,-1)$
(c) $(-1,0)$
(d) $(1,0)$

Sol. (b): We know that the diagonals AC and BD of parallelogram ABCD bisect each other.

OR

$$
\begin{array}{rlrl}
& & {\left[\begin{array}{l}
\text { The mid point } \\
\text { of diagonal AC }
\end{array}\right]} & =\left[\begin{array}{l}
\text { Mid point of } \\
\text { diagonal BD }
\end{array}\right] \\
\Rightarrow & & \left(\frac{-2+8}{2}, \frac{3+3}{2}\right) & =\left(\frac{x_{4}+6}{2}, \frac{y_{4}+7}{2}\right) \\
\Rightarrow & \left(\frac{6}{2}, \frac{6}{2}\right) & =\left(\frac{x_{4}+6}{2}, \frac{y_{4}+7}{2}\right) \\
\Rightarrow & & (3,3) & =\left(\frac{x_{4}+6}{2}, \frac{y_{4}+7}{2}\right)
\end{array}
$$

Comparing both sides, we have

$$
\begin{array}{rlrlrl}
& & \frac{x_{4}+6}{2} & =3 & & \text { and } \\
\Rightarrow & & \frac{y_{4}+7}{2} & =3 \\
\Rightarrow & x_{4}+6 & =6 & & \Rightarrow & y_{4}+7
\end{array}=6
$$

\therefore The fourth vertex of parallelogram is $(0,-1)$ verifies ans. (b).
Q12. If the point $\mathrm{P}(2,1)$ lies on the line segment joining points $A(4,2)$ and $B(8,4)$, then
(a) $\mathrm{AP}=\frac{1}{3} \mathrm{AB}$
(b) $\mathrm{AP}=\mathrm{PB}$
(c) $\mathrm{PB}=\frac{1}{3} \mathrm{AB}$
(d) $\mathrm{AP}=\frac{1}{2} \mathrm{AB}$

Sol. (d):

$$
\begin{aligned}
& \therefore \quad x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \\
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
& \Rightarrow \quad 2=\frac{k(8)+1(4)}{k+1} \\
& 1=\frac{k(4)+1(2)}{k+1} \\
& \Rightarrow \quad 8 k+4=2 k+2 \\
& 4 k+2=k+1 \\
& 3 k=-1 \\
& \Rightarrow k=\frac{-1}{3} \\
& k=\frac{-1}{3}
\end{aligned}
$$

Verification:

$$
\begin{aligned}
& \text { a } \\
& \therefore \\
& \Rightarrow \\
& \text { and } \\
& \therefore \\
& \text { and } \\
& \text { So, } \\
& \\
& \Rightarrow
\end{aligned}
$$

Hence, verifies the ans. (d).
Q13. If $\mathrm{P}(-, 4)$ is the mid point of the line segment joining the points $Q(-6,5)$ and $R(-2,3)$, then the value of ' a ' is
(a) -4
(b) -12
(c) 12
(d) -6

Sol. (b): $\mathrm{P}(x, y)$ is mid-point of QR then

$$
\begin{aligned}
& & \left(\frac{a}{3}, 4\right) & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
\Rightarrow & & \left(\frac{a}{3}, 4\right) & =\left(\frac{-6-2}{2}, \frac{5+3}{2}\right) \\
\Rightarrow & & \frac{a}{3} & =\frac{-8}{2} \\
\Rightarrow & & a & =-4 \times 3=-12
\end{aligned}
$$

Verifies the ans. (b).
Q14. The perpendicular bisector of the line segment joining the points $A(1,5)$ and $B(4,6)$ cuts y-axis at
(a) $(0,13)$
(b) $(0,-13)$
(c) $(0,12)$
(d) $(13,0)$

Sol. (a): The given points are $\mathrm{A}(1,5)$ and $\mathrm{B}(4,6)$.
The perpendicular bisector of the line segment joining the points $A(1,5)$ and $B(4,6)$ cuts the y-axis at $P(0, y)$.
Now, $\quad \mathrm{AP}=\mathrm{BP} \Rightarrow \mathrm{AP}^{2}=\mathrm{BP}^{2}$
$\therefore \quad 1+(y-5)^{2}=16+(y-6)^{2}$
$\Rightarrow \quad 1+y^{2}-10 y+25=16+y^{2}-12 y+36$
$\Rightarrow \quad-10 y+26=-12 y+52$
$\Rightarrow \quad 12 y-10 y=52-26$
$\Rightarrow \quad 2 y=26$
$\Rightarrow \quad y=26 \div 2=13$

So, the required point is $(0,13)$.
Hence, (a) is the correct answer.
Q15. The coordinates of the point which is equidistant from the three vertices of the $\triangle \mathrm{AOB}$ as shown in the figure is
(a) (x, y)
(b) (y, x)
(c) $\left(\frac{x}{2}, \frac{y}{2}\right)$
(d) $\left(\frac{y}{2}, \frac{x}{2}\right)$

Sol. (a): In a right triangle, the mid-point of the hypotenuse is equidistant from the three vertices of triangle.

Mid-point of $\mathrm{A}(2 x, 0)$ and $\mathrm{B}(0,2 y)$ is

$$
=\left(\frac{2 x+10}{2}, \frac{0+2 y}{2}\right)=(x, y)
$$

Hence, (a) is the correct answer.
Q16. A circle drawn with origin as the centre passes through $\left(\frac{13}{2}, 0\right)$.
The point which does not lie in the interior of the circle is
(a) $\left(\frac{-3}{4}, 1\right)$
(b) $\left(2, \frac{7}{3}\right)$
(c) $\left(5, \frac{-1}{2}\right)$
(d) $\left(-6, \frac{5}{2}\right)$

Sol. (d): Radius of circle $=\sqrt{\left(\frac{13}{2}-0\right)^{2}+(0-0)^{2}}=\frac{13}{2}=6.5$ units
(a) Distance of point $\left(\frac{-3}{4}, 1\right)$ from $(0,0)$ is
$=\sqrt{\left(\frac{-3}{4}-0\right)^{2}+(1-0)^{2}}=\sqrt{\frac{9}{16}+1}=\sqrt{\frac{25}{16}}=\frac{5}{4}=1.25$ units
The distance $1.25<6.5$. So, the point $\left(\frac{-3}{4}, 1\right)$ lies in the interior
of the circle.
(b) Distance of point $\left(2, \frac{7}{3}\right)$ from $(0,0)$ is
$=\sqrt{(2-0)^{2}+\left(\frac{7}{3}-0\right)^{2}}=\sqrt{4+\frac{49}{9}}=\sqrt{\frac{85}{9}}=\frac{9.2195}{3}=3.0731<6.25$
So, the point $\left(2, \frac{7}{3}\right)$ lies in the interior of the circle.
(c) Distance of point $\left(5,-\frac{1}{2}\right)$ from $(0,0)$ is

$$
=\sqrt{(5-0)^{2}+\left(-\frac{1}{2}-0\right)}=\sqrt{25+\frac{1}{4}}=\sqrt{\frac{101}{4}}=\frac{10.0498}{2}=5.0249<6.5
$$

So, the point $\left(5, \frac{-1}{2}\right)$ lies in the interior of the circle.
(d) Distance of point $\left(-6, \frac{5}{2}\right)$ from $(0,0)$ is
$=\sqrt{(-6-0)^{2}+\left(\frac{5}{2}-0\right)^{2}}=\sqrt{36+\frac{25}{4}}=\sqrt{\frac{169}{4}}=\frac{13}{2}=6.5$ units
So, $\left(-6, \frac{5}{2}\right)$ lies on the circle. It does not lie in the interior of the circle.
Hence, (d) is the correct answer.
Q17. A line intersects the y-axis and x-axis at points P and Q respectively. If $(2,-5)$ is the mid-point of $P Q$, then co-ordinates of P and Q are respectively.
(a) $(0,-5)$ and $(2,0)$
(b) $(0,10)$ and $(-4,0)$
(c) $(0,4)$ and $(-10,0)$
(d) $(0,-10)$ and $(4,0)$

Sol. (d): P lies on y-axis so co-ordinates of P are $(0, y)$.
Similarly, co-ordinates of Q lies on x-axis $=\mathrm{Q}(x, 0)$
Mid-point of PQ is

$$
\begin{array}{rlrl}
& & \mathrm{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\mathrm{M}(2,-5), \text { which is given } \\
\Rightarrow \quad & \mathrm{M}\left(\frac{0+x}{2}, \frac{y+0}{2}\right) & =\mathrm{M}(2,-5) \\
\Rightarrow \quad & \left(\frac{x}{2}, \frac{y}{2}\right) & =(2,-5)
\end{array}
$$

Comparing both sides, we get

$$
\begin{array}{lllll}
& & \frac{x}{2} & =2 & \\
& \text { and } & & \frac{y}{2}=-5 \\
x & x & \text { and } & & y=-10
\end{array}
$$

Hence, the co-ordinates of $P(0,-10)$ and $Q(4,0)$ verifies ans. (d).
Q18. The area of the triangle with vertices $(a, b+c)(b, c+a)$ and $(c, a+b)$ is
(a) $(a+b+c)^{2}$
(b) 0
(c) $a+b+c$
(d) $a b c$

Sol. (b): If the vertices of $\triangle \mathrm{ABC}$ are

$$
\begin{gathered}
\begin{aligned}
\mathrm{A}\left(x_{1}, y_{1}\right) & =\mathrm{A}(a, b+c) \\
\mathrm{B}\left(x_{2}, y_{2}\right) & =\mathrm{B}(b, c+a) \\
\mathrm{C}\left(x_{3}, y_{3}\right) & =\mathrm{C}(c, a+b)
\end{aligned} \\
\text { Then, Area of } \triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
\Rightarrow \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}[a\{c+a-(a+b)\}+b\{a+b-(b+c)\}+c\{b+c-(c+a)\}] \\
=\frac{1}{2}[a(c-b)+b(a-c)+c(b-a)]
\end{gathered}
$$

\Rightarrow Area of $\triangle \mathrm{ABC}=\frac{1}{2}[a c-a b+a b-b c+b c-a c]$
\Rightarrow Area of $\triangle \mathrm{ABC}=0 \quad$ So, verifies the option (b).
Q19. If the distance between the points $(4, p)$ and $(1,0)$ is 5 , then the value of p is
(a) 4 only
(b) ± 4
(c) -4 only
(d) 0

Sol. (b): According to the question, the distance between $A(4, p)$ and $\mathrm{B}(1,0)$ is 5 units.

	\therefore	AB	$=5$ units
\Rightarrow	$(\mathrm{AB})^{2}$	$=(5)^{2}$	
\Rightarrow	$(4-1)^{2}+(p-0)^{2}$	$=25$	
\Rightarrow	$(3)^{2}+(p)^{2}$	$=25$	
\Rightarrow	p^{2}	$=25-9$	
\Rightarrow	p^{2}	$=16$	
	\Rightarrow	p	$= \pm 4$

Q20. If the points $\mathrm{A}(1,2), \mathrm{O}(0,0)$ and $\mathrm{C}(a, b)$ are collinear, then
(a) $a=b$
(b) $a=2 b$
(c) $2 a=b$
(d) $a=-b$

Sol. (c): Points $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3} y_{3}\right)$ will be collinear if the area of $\triangle \mathrm{ABC}$ is zero so, $\mathrm{A}(1,2), \mathrm{B}(0,0), \mathrm{C}(a, b)$ will collinear if area $\Delta \mathrm{ABC}=0$
or

$$
\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0
$$

$\Rightarrow \quad \frac{1}{2}[1(0-b)+0(b-2)+a(2-0)]=0$
$\Rightarrow \quad \frac{1}{2}(-b+2 a)=0$
$\Rightarrow \quad \frac{-b}{2}+a=0$
$\Rightarrow \quad-b+2 a=0$
$\Rightarrow \quad 2 a=b$
Hence, verifies the ans. (c).

EXERCISE 7.2

State whether the following statements are true or false. Justify your answer.
Q1. $\triangle A B C$ with vertices $A(-2,0), B(2,0)$ and $C(0,2)$ is similar to $\triangle D E F$ with vertices $\mathrm{D}(-4,0), \mathrm{E}(4,0)$ and $\mathrm{F}(0,4)$.
Sol. True: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ if $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}=k$
In $\triangle \mathrm{ABC}$,

$$
\Rightarrow \quad \mathrm{AB}=4 \text { units }
$$

$$
\begin{aligned}
\mathrm{AB}^{2} & =[2-(-2)]^{2}+[0-(0)]^{2}=(4)^{2}+0=(4)^{2} \\
\mathrm{AB} & =4 \text { units } \\
\mathrm{BC}^{2} & =(0-2)^{2}+(2-0)^{2}=4+4=8
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & & \mathrm{BC} & =2 \sqrt{2} \text { units } \\
\Rightarrow & \mathrm{AC}^{2} & =[0-(-2)]^{2}+(2-0)^{2}=2^{2}+2^{2}=4+4=8 \\
& \mathrm{In} \triangle \mathrm{DEF}, & \mathrm{AC} & =2 \sqrt{2} \text { units } \\
\Rightarrow & \mathrm{DE}^{2} & =[4-(-4)]^{2}+(0-0)^{2}=(8)^{2} \\
\Rightarrow & \mathrm{DE} & =8 \text { units } \\
\mathrm{EF}^{2} & =(0-4)^{2}+(4-0)^{2}=4^{4}+4^{2}=16+16=32 \\
\Rightarrow & \mathrm{EF} & =4 \sqrt{2} \text { units } \\
& & \mathrm{DF}^{2} & =[0-(-4)]^{2}+(4-0)^{2}=16+16=32 \\
& & \mathrm{DF} & =4 \sqrt{2} \text { units } \\
& & \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{4}{8}=\frac{1}{2} \\
& & \frac{\mathrm{BC}}{\mathrm{EF}} & =\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{1}{2} \\
\therefore & \frac{\mathrm{AC}}{\mathrm{DF}} & =\frac{2 \sqrt{2}}{4 \sqrt{2}}=\frac{1}{2} \\
& & \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{1}{2}
\end{array}
$$

Hence, $\triangle \mathrm{ABC} \sim \Delta \mathrm{DEF}$.
Q2. Point $\mathrm{P}(-4,2)$ lies on the line segment joining the points $\mathrm{A}(-4,6)$ and $B(-4,-6)$.
Sol. True: We observe that x-coordiante is same i.e., equal to (-4) so line is parallel to y-axis. y-coordinate of P i.e., 2 lies between 6 and -6
of A and B respectively. Hence, P lies between and on AB . OR
Point $\mathrm{P}(-4,2)$ will lie on the line AB if area of $\triangle \mathrm{ABP}$ is zero.
\therefore i.e., $\operatorname{ar}(\triangle \mathrm{ABP})=0$
$\Rightarrow \quad \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0$
$\Rightarrow \quad \frac{1}{2}[-4(-6-2)-4(2-6)-4(6+6)]=0$
$\Rightarrow \quad 2 \quad[-4(-8)-4(-4)-4(12)]=0$
$\Rightarrow \quad 32+16-48=0$
$\Rightarrow \quad 48-48=0$, which is true.
Hence, point P lies on the line joining A and B .
Q3. The points $(0,5),(0,-9)$ and $(3,6)$ are collinear.
Sol. False: Three points A, B, and C will be collinear if the area of $\triangle \mathrm{ABC}=0$
$\Rightarrow \quad \frac{1}{2}[0(-9-6)+0(6-5)+3(5-(-9)]=0$

Hence, the given points are not collinear.
Q4. Point $P(0,2)$ is the point of intersection of y-axis and perpendicular bisector of line segment joining the points $A(-1,1)$ and $B(3,3)$.
Sol. False: As the point $\mathrm{P}(0,2)$ is the point of intersection of y-axis and perpendicular bisector of the line joining the points $\mathrm{A}(-1,1)$ and $B(3,3)$, then point P must be equidistant from A and B. So, we must write $\mathrm{PA}=\mathrm{PB}$.

$$
\begin{array}{ll}
& \mathrm{PA}=\sqrt{(-1-0)^{2}+(1-2)^{2}}=\sqrt{1+1}=\sqrt{2} \text { units } \\
\therefore \quad & \mathrm{PA}=\sqrt{(3-0)^{2}+(3-2)^{2}}=\sqrt{9+1}=\sqrt{10} \text { units } \\
\therefore \quad & \mathrm{PA} \neq \mathrm{PB}
\end{array}
$$

Hence, the given statement is false.
Q5. Points $A(3,1), B(12,-2)$ and $C(0,2)$ cannot be the vertices of a triangle.
Sol. True: Points A, B, C can form a triangle if the sum of any two sides is greater than the third side.

$$
\begin{array}{rlrl}
& & \mathrm{AB}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
\Rightarrow & & \mathrm{AB}^{2} & =(12-3)^{2}+(-2-1)^{2}=81+9=90 \\
\Rightarrow & & \mathrm{AB} & =3 \sqrt{10} \text { units } \\
& & & \mathrm{BC}^{2} \\
\Rightarrow & & (0-12)^{2}+[2-(-2)]^{2}=144+16=160 \\
& & \mathrm{BC}=4 \sqrt{10} \text { units } \\
& & \mathrm{AC}^{2}=(0-3)^{2}+(2-1)^{2}=9+1=10 \Rightarrow \mathrm{AC}=\sqrt{10} \text { units } \\
& \mathrm{AC}=\sqrt{10} \text { units, } \mathrm{AB}=3 \sqrt{10} \text { units } \text { and } \mathrm{BC}=4 \sqrt{10} \text { units }
\end{array}
$$

$$
\text { Now, } A B+A C=\sqrt{10}+3 \sqrt{10}=4 \sqrt{10} \text { units }=B C
$$

So, A, B, C points cannot form a Δ.
Q6. Points $A(4,3), B(6,4), C(5,-6)$ and $D(-3,5)$ are the vertices of a parallelogram.
Sol. False: The diagonals of parallelogram bisect each other so, ABCD will be a parallelogram if mid-point of diagonal $\mathrm{AC}=$ mid-point of diagonal BD

$$
\begin{array}{lll}
\Rightarrow & \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =\left(\frac{x_{1}^{\prime}+x_{2}^{\prime}}{2}, \frac{y_{1}^{\prime}+y_{2}^{\prime}}{2}\right) \\
\Rightarrow & \left(\frac{4+5}{2}, \frac{-6+3}{2}\right) & =\left(\frac{6-3}{2}, \frac{4+5}{2}\right) \\
\Rightarrow & & \left(\frac{9}{2}, \frac{-3}{2}\right) \neq\left(\frac{3}{2}, \frac{9}{2}\right)
\end{array}
$$

Hence, ABCD is not a parallelogram.
Q7. A circle has its centre at the origin and a point $P(5,0)$ lies on it. The point $Q(6,8)$ lies outside the circle.

$$
\begin{aligned}
& \Rightarrow \quad 0+0+3(14)=0 \\
& \Rightarrow \\
& 42 \neq 0 \text {, which is false. }
\end{aligned}
$$

Sol. True: If the distance of Q from the cente $O(0,0)$ is greater than the radius then point Q lies in the exterior of the circle. Point $\mathrm{P}(5,0)$ lies on the circle and centre is at $O(0,0)$ so radius $=O P$

$$
\begin{array}{lrl}
& \mathrm{OP}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& & =(5-0)^{2}+(0-0)^{2} \\
\Rightarrow & \mathrm{OP}^{2} & =5^{2} \\
\Rightarrow & \mathrm{OP}^{2} & =5 \text { units } \\
\text { Now, } & \mathrm{OQ}^{2} & =(6-0)^{2}+(8-0)^{2}=36+64=100 \\
\Rightarrow & \mathrm{OQ} & =10 \text { units } \\
\therefore & \mathrm{OQ} & >\text { OP (radius) }
\end{array}
$$

So, point Q lies exterior to circle.
Q 8 . The point $\mathrm{A}(2,7)$ lies on the perpendicular bisector of line segment joining the points $P(6,5)$ and $Q(0,-4)$.
Sol. False: Any point (A) on perpendicular bisector will be equidistant from P and Q so

$$
\begin{aligned}
& P A=Q A \\
& \text { or } \quad \mathrm{PA}^{2}=\mathrm{QA}^{2} \\
& \Rightarrow(2-6)^{2}+[7-(5)]^{2}=(2-0)^{2}+[7-(-4)]^{2} \\
& \Rightarrow \quad(-4)^{2}+(2)^{2}=2^{2}+(11)^{2} \\
& \Rightarrow \quad 16+4=4+121 \\
& \Rightarrow \quad 20 \neq 125
\end{aligned}
$$

So, A does not lie on the perpendicular bisector of PQ.
Q9. Point $\mathrm{P}(5,-3)$ is one of the two points of trisection of the line segment joining the points $\mathrm{A}(7,-2)$ and $\mathrm{B}(1,-5)$.
Sol. True

Let point P divides the line AB in ratio $k: 1$ then

$$
\begin{aligned}
& x & =\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} & \text { and } \\
\Rightarrow & x & =\frac{k(1)+1(7)}{(k+1)}, & y
\end{aligned}=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}, y=\frac{k(-5)+1(-2)}{k+1}
$$

So, P divides AB in $1: 2$ ratio.
Hence, P is one point of trisection of AB .
Q10. Points $A(-6,10), B(-4,6)$ and $C(3,-8)$ are collinear such that $\mathrm{AB}=\frac{2}{9} \mathrm{AC}$.
Sol. True: Points A, B and C will be collinear if ar $(\triangle \mathrm{ABC})=0$

$$
\begin{aligned}
& \text { ar } \triangle \mathrm{ABC}=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] & =0 \\
\Rightarrow & \frac{1}{2}[-6\{6-(-8)\}-4(-8-10)+3(10-6)] & =0 \\
\Rightarrow & -6(14)-4(-18)+3(4) & =0 \\
\Rightarrow & -84+72+12 & =0 \\
\Rightarrow & -84+84 & =0, \text { which is true }
\end{aligned}
$$

So, points A, B and C are collinear.

$$
\left.\begin{array}{rl}
\mathrm{AC}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
& =(3+6)^{2}+(-8-10)^{2}=81+324 \\
\Rightarrow \quad \mathrm{AC} & =\sqrt{405}=9 \sqrt{5} \text { units } \\
\mathrm{AB}^{2} & =[-4-(-6)]^{2}+(6-10)^{2} \\
& =(-4+6)^{2}+(-4)^{2} \\
\Rightarrow \quad & =(2)^{2}+(-4)^{2}=4+16 \\
\Rightarrow \quad \mathrm{AB}^{2} & =20 \\
\text { Now, } \quad \mathrm{AB} & =2 \sqrt{5} \text { units } \\
& \\
\mathrm{AB} & =\frac{2}{9} \mathrm{AC} \\
& \\
& \\
& \\
& =\mathrm{AB} . \mathrm{S}
\end{array}\right)=\frac{2}{9} \times 9 \sqrt{5} .
$$

Hence, $\mathrm{AB}=\frac{2}{9} \mathrm{AC}$ is true.
Q11. The point $P(-2,4)$ lies on a circle of radius 6 and centre $(3,5)$.
Sol. False: The point $\mathrm{P}(-2,4)$ lies on a circle if distance between P and centre is equal to the radius so distance of P from centre $\mathrm{O}(3,5)$ will be

$$
\begin{array}{ll}
& \mathrm{OP}^{2}=(-2-3)^{2}+(4-5)^{2} \\
\Rightarrow & \mathrm{OP}^{2}=25+(-1)^{2} \\
\Rightarrow & \mathrm{OP}=\sqrt{26} \neq \text { radius } 6
\end{array}
$$

So, P does not lie on the circle. It will lie inside the circle.
Q12. The points $\mathrm{A}(-1,-2), \mathrm{B}(4,3), \mathrm{C}(2,5)$ and $\mathrm{D}(-3,0)$ in that order form a rectangle.
Sol. True: ABCD will form a rectangle if
(i) it is a parallelogram.
(ii) diagonals are equal.

For parallelogram: Diagonals bisect each other.
i.e., \quad Mid point of $\mathrm{AC}=\mathrm{Mid}$ point of BD is
i.e., $\quad\left(\frac{-1+2}{2}, \frac{-2+5}{2}\right)=\left(\frac{4-3}{2}, \frac{3+0}{2}\right)$
$\Rightarrow \quad\left(\frac{1}{2}, \frac{3}{2}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)$
Hence, ABCD is a parallelogram.
Now,
Diagonal AC $=\sqrt{(2+1)^{2}+(5+1)^{2}}=\sqrt{9+49}$
$\Rightarrow \quad \mathrm{AC}=\sqrt{58}$ units
and
Diagonal BD $=\sqrt{(-3-4)^{2}+(0-3)^{2}}$
$\Rightarrow \quad \mathrm{BD}=\sqrt{49+9}$ units
$\Rightarrow \quad \mathrm{BD}=\sqrt{58}$ units
$\therefore \quad$ Diagonal AC = Diagonal BD
Hence, ABCD is a rectangle.

For parallelogram: Diagonals bisect each other.
i.e., \quad Mid point of $A C=M i d$ point of $B D$ is
i.e., $\quad\left(\frac{-1+2}{2}, \frac{-2+5}{2}\right)=\left(\frac{4-3}{2}, \frac{3+0}{2}\right)$
$\Rightarrow \quad\left(\frac{1}{2}, \frac{3}{2}\right)=\left(\frac{1}{2}, \frac{3}{2}\right)$
Hence, ABCD is a parallelogram.
Now,
Diagonal AC $=\sqrt{(2+1)^{2}+(5+1)^{2}}=\sqrt{9+49}$
$\Rightarrow \quad \mathrm{AC}=\sqrt{58}$ units
and
Diagonal $\mathrm{BD}=\sqrt{(-3-4)^{2}+(0-3)^{2}}$
$\Rightarrow \quad \mathrm{BD}=\sqrt{49+9}$ units
$\Rightarrow \quad \mathrm{BD}=\sqrt{58}$ units
$\therefore \quad$ Diagonal AC = Diagonal BD
Hence, $A B C D$ is a rectangle.

EXERCISE 7.3

Q1. Name the type of triangle formed by the points $A(-5,6)$, $B(-4,-2)$ and $C(7,5)$.
Sol. $\mathrm{A}(-5,6), \mathrm{B}(-4,-2), \mathrm{C}(7,5)$

$$
\mathrm{AB}^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}
$$

$\Rightarrow \quad \mathrm{AB}^{2}=(-4+5)^{2}+(-2-6)^{2}$

$$
=(1)^{2}+(-8)^{2}=1+64=65
$$

$\Rightarrow \quad \mathrm{AB}=\sqrt{65}$ units $A C^{2}=(7+5)^{2}+(5-6)^{2}$
$\Rightarrow \quad \mathrm{AC}^{2}=(12)^{2}+(-1)^{2} \Rightarrow \mathrm{AC}^{2}=144+1$
$\Rightarrow \quad \mathrm{AC}=\sqrt{145}$ units
$\mathrm{BC}^{2}=(7+4)^{2}+(5+2)^{2}=11^{2}+7^{2}=121+49$
$\Rightarrow \quad \mathrm{BC}=\sqrt{170}$ units
As $\quad A B \neq B C \neq A C \quad$ so scalene triangle.
$\because \quad A C^{2}+\mathrm{AB}^{2}=145+65=210 \neq \mathrm{BC}^{2}$, so it is not a right angled Δ
So, a scalene Δ will be formed.
Q2. Find the points on the x-axis which are at a distance of $2 \sqrt{5}$ from point $(7,-4)$. How many such points are there?
Sol. Let point $\mathrm{P}(x, 0)$ be a point on x-axis, and A be the point $(7,-4)$.
So,

$$
\mathrm{AP}=2 \sqrt{5}
$$

[Given]
$\Rightarrow \quad \mathrm{AP}^{2}=4 \times 5=20$
$\Rightarrow \quad(x-7)^{2}+[0-(-4)]^{2}=20$
$\Rightarrow \quad x^{2}+49-14 x+16=20$
$\begin{array}{rrrr}\Rightarrow & x^{2}-14 x-20+65 & =0 & \\ \Rightarrow & x^{2}-14 x+45 & =0 & \\ \Rightarrow & x^{2}-9 x-5 x+45 & =0 & \\ \Rightarrow & x(x-9)-5(x-9) & =0 & \\ \Rightarrow & (x-9)(x-5) & =0 & \\ \Rightarrow & x-9 & =0 & \text { or } \\ \Rightarrow & x & =9 & \text { or }\end{array}$
Hence, there are two such points on x-axis whose distance from $(7,-4)$ is $2 \sqrt{5}$. Hence, required points are $(9,0),(5,0)$.
Q3. What type of quadrilateral do the points $\mathrm{A}(2,-2), \mathrm{B}(7,3)$, $C(11,-1)$ and $D(6,-6)$ taken in that order, form?
Sol. (i) A qudrilateral is a parallelogram, if mid points of diagonals AC and BD are same.
(ii) A parallelogram is not a rectangle, if diagonals $\mathrm{AC} \neq \mathrm{BD}$.
(iii) A parallelogram may be a rhombus if $\mathrm{AB}=\mathrm{BC}$.
(iv) If in a parallelogram diagonals are equal, then it is rectangle.

In a rectangle if the sides $\mathrm{AB}=\mathrm{BC}$, then the rectangle is a square.
For parallelogram with vertices $\mathrm{A}(2,-2), \mathrm{B}(7,3), \mathrm{C}(11,-1), \mathrm{D}(6,-6)$.
mid point of $\mathrm{AC}=$ mid point of BD
$\Rightarrow \quad\left(\frac{2+11}{2}, \frac{-2-1}{2}\right)=\left(\frac{7+6}{2}, \frac{3-6}{2}\right)$
$\Rightarrow \quad\left(\frac{13}{2}, \frac{-3}{2}\right)=\left(\frac{13}{2}, \frac{-3}{2}\right)$, which is true.
Hence, ABCD is a parallelogram.
Now, we will check whether $A C=B D$
or

$$
\mathrm{AC}^{2}=\mathrm{BD}^{2}
$$

$\Rightarrow \quad(11-2)^{2}+(-1+2)^{2}=(6-7)^{2}+(-6-3)^{2}$
$\Rightarrow \quad(9)^{2}+(1)^{2}=(-1)^{2}+(-9)^{2}$
$\Rightarrow \quad 81+1=1+81$
$\Rightarrow \quad 82=82$, which is true.
As the diagonals are equal so it is a rectangle or square.
Now, we will check whether adjacent sides $A B=B C$
or

$$
\mathrm{AB}^{2}=\mathrm{BC}^{2}
$$

$\Rightarrow \quad(7-2)^{2}+(3+2)^{2}=(11-7)^{2}+(-1-3)^{2}$
$\Rightarrow \quad 5^{2}+5^{2}=(4)^{2}+(-4)^{2}$
$\Rightarrow \quad 25+25=16+16$
$\Rightarrow \quad 50 \neq 32$, which is false.
So, ABCD is not a square. Hence, ABCD is a rectangle.
Q4. Find the value of a, if the distance between the points $\mathrm{A}(-3,-14)$ and $\mathrm{B}(a,-5)$ is 9 units.
Sol. Consider $\mathrm{A}(-3,-14)$ and $\mathrm{B}(a,-5)$.

According to the question, $\quad \mathrm{AB}=9$
$\Rightarrow \quad \mathrm{AB}^{2}=81$
$\Rightarrow \quad(a+3)^{2}+(-5+14)^{2}=81$
$\Rightarrow \quad a^{2}+9+6 a+(9)^{2}=81$
$\Rightarrow \quad a^{2}+6 a+9=81-81$
$\Rightarrow \quad(a+3)^{2}=0$
$\Rightarrow \quad a+3=0$
$\Rightarrow \quad a=-3$
Q5. Find a point which is equidistant from the points $A(-5,4)$ and $B(-1,6)$. How many such points are there?
Sol. Let $\mathrm{P}(x, y)$ is equidistant from $\mathrm{A}(-5,4)$ and $\mathrm{B}(-1,6)$, then

$$
\mathrm{PA}=\mathrm{PB}
$$

$\Rightarrow \quad \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow \quad(x+5)^{2}+(y-4)^{2}=(x+1)^{2}+(y-6)^{2}$
$\Rightarrow x^{2}+25+10 x+y^{2}+16-8 y=x^{2}+1+2 x+y^{2}+36-12 y$
$\Rightarrow \quad 41+10 x-8 y=37+2 x-12 y$
$\Rightarrow \quad 8 x+4 y+4=0$
$\Rightarrow \quad 2 x+1 y+1=0$
The above equation shows that infinite points are equidistant from $A B$, because all the points on perpendicular bisector of $A B$ will be equidistant from $A B$.
\Rightarrow One such point which is equidistant from A and B is the midpoint M of AB i.e.,

$$
\begin{aligned}
& \mathrm{M}\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \mathrm{M}\left(\frac{-5-1}{2}, \frac{4+6}{2}\right) \\
& \mathrm{M}\left(\frac{-6}{2}, \frac{10}{2}\right) \\
& \mathrm{M}(-3,5)
\end{aligned}
$$

So, $(-3,5)$ is equidistant from points A and B.
Q6. Find the coordinates of the point Q on the x-axis which lies on the perpendicular bisector of the line segment joining the points $\mathrm{A}(-5,-2)$ and $B(4,-2)$. Name the type of triangle formed by the points Q, A and B.
Sol. Let $\mathrm{Q}(x, 0)$ be a point on x-axis which lies on the perpendicular bisector of $A B$.

$$
\begin{array}{ll}
\therefore & \mathrm{QA}=\mathrm{QB} \\
\Rightarrow & \mathrm{QA}^{2}=\mathrm{QB}^{2} \\
\Rightarrow & (-5-x)^{2}+(-2-0)^{2}=(4-x)^{2}+(-2-0)^{2} \\
\Rightarrow & (x+5)^{2}+(-2)^{2}=(4-x)^{2}+(-2)^{2} \\
\Rightarrow & x^{2}+25+10 x+4=16+x^{2}-8 x+4
\end{array}
$$

$\begin{aligned} \Rightarrow & 10 x+8 x & =16-25 \\ \Rightarrow & 18 x & =-9 \\ \Rightarrow & x & =\frac{-9}{18}=\frac{-1}{2}\end{aligned}$
Hence, the point Q is $\left(\frac{-1}{2}, 0\right)$.
Now,

$$
\mathrm{QA}^{2}=\left[-5+\frac{1}{2}\right]^{2}+[-2-0]^{2}
$$

$$
=\left(\frac{-9}{2}\right)^{2}+\frac{4}{1}
$$

$\Rightarrow \quad \mathrm{QA}^{2}=\frac{81}{4}+\frac{4}{1}=\frac{81+16}{4}=\frac{97}{4}$
$\Rightarrow \quad \mathrm{QA}=\sqrt{\frac{97}{4}}=\frac{\sqrt{97}}{2}$ units
Now, $\mathrm{QB}^{2}=\left(4+\frac{1}{2}\right)^{2}+(-2-0)^{2}=\left(\frac{9}{2}\right)^{2}+(-2)^{2}$
$\Rightarrow \quad \mathrm{QB}^{2}=\frac{81}{4}+\frac{4}{1}=\frac{81+16}{4}=\frac{97}{4}$
$\Rightarrow \quad \mathrm{QB}=\sqrt{\frac{97}{4}}=\frac{\sqrt{97}}{2}$ units
and
$\mathrm{AB}=\sqrt{(4+5)^{2}+[-2-(-2)]^{2}}=\sqrt{(9)^{2}}=9$ units
$A B=9$ units
As
$\mathrm{QA}=\mathrm{QB}$
So, $\Delta \mathrm{QAB}$ is an isosceles Δ.
Q7. Find the value of m if the points $(5,1),(-2,-3)$ and $(8,2 m)$ are collinear.
Sol. Points A, B, C will be collinear if the area of $\triangle \mathrm{ABC}=0$.

$$
\left.\begin{array}{rrl}
\text { i.e., } & \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
\Rightarrow & \frac{1}{2}[5(-3-2 m)-2(2 m-1)+8(1+3)]=0 \\
\Rightarrow & -15-10 m-4 m+2+32=0 \\
\Rightarrow & -14 m-15+34=0 \\
\Rightarrow & -14 m+19 & =0 \\
\Rightarrow & -14 m & =-19 \\
\Rightarrow & & m
\end{array}\right) \frac{19}{14} 9 .
$$

Hence, the required value of $m=\frac{19}{14}$.

Q8. If the point $A(2,-4)$ is equidistant from $P(3,8)$ and $Q(-10, y)$, then find the values of y. Also find distance PQ.
Sol. According to the question,

$$
\begin{array}{rlrl}
& \mathrm{PA} & =\mathrm{QA} \\
\Rightarrow & \mathrm{PA}^{2} & =\mathrm{QA}^{2} \\
\Rightarrow & (3-2)^{2}+(8+4)^{2} & =(-10-2)^{2}+(y+4)^{2} \\
\Rightarrow & 1^{2}+12^{2} & =(-12)^{2}+y^{2}+16+8 y \\
\Rightarrow & y^{2}+8 y+16-1 & =0 \\
\Rightarrow & y^{2}+8 y+15 & =0 \\
\Rightarrow & y^{2}+5 y+3 y+15 & =0 \\
\Rightarrow & y(y+5)+3(y+5) & =0 \\
\Rightarrow & (y+5)(y+3) & =0 \\
\Rightarrow & y+5 & =0 & \text { or } y+3=0 \\
\Rightarrow & y & =-5 \quad \text { or } y=-3
\end{array}
$$

So, the co-ordinates are $P(3,8), \quad Q_{1}(-10,-3), \quad Q_{2}(-10,-5)$.
Now, $\quad \mathrm{PQ}_{1}^{2}=(3+10)^{2}+(8+3)^{2}=13^{2}+11^{2}$
$\Rightarrow \quad \mathrm{PQ}_{1}^{2}=169+121$
$\Rightarrow \quad \mathrm{PQ}_{1}=\sqrt{290}$ units
and $\quad \mathrm{PQ}_{2}^{2}=(3+10)^{2}+(8+5)^{2}=13^{2}+13^{2}$

$$
=13^{2}[1+1]
$$

$\Rightarrow \quad \mathrm{PQ}_{2}^{2}=13^{2} \times 2$
$\Rightarrow \quad \mathrm{PQ}_{2}=13 \sqrt{2}$ units
Hence, $y=-3,-5$, and $P Q=\sqrt{290}$ units and $13 \sqrt{2}$ units.
Q9. Find the area of the triangle whose vertices are $(-8,4),(-6,6)$ and $(-3,9)$.
Sol. Vertices of $\triangle A B C$ are $A(-8,4), \quad B(-6,6)$ and $C(-3,9)$.

$$
\begin{aligned}
\therefore \text { Area of } \triangle \mathrm{ABC} & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
\Rightarrow \text { Area of } \triangle \mathrm{ABC} & =\frac{1}{2}[-8(6-9)-6(9-4)-3(4-6)] \\
& =\frac{1}{2}[-8(-3)-6(5)-3(-2)] \\
& =\frac{1}{2}[24-30+6]=0
\end{aligned}
$$

Hence, the area of given triangle is zero.
Q10. In what ratio does the x-axis divides the line segment joining the points $(-4,-6)$ and $(-1,7)$? Find the coordinates of the point of division. Sol. Point $\mathrm{P}(x, 0)$ on x-axis intersects the line joining the points $\mathrm{A}(-4,-6)$ and $\mathrm{B}(-1,7)$. Let P divides the line in the ratio $k: 1$.

Using the section formula, we have

$$
\begin{array}{cc}
& y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \tag{I}\\
\Rightarrow & \frac{0}{1}=\frac{k(7)+1(-6)}{k+1} \\
\Rightarrow & 7 k-6=0 \\
\Rightarrow & k=\frac{6}{7} \\
\Rightarrow & m_{1}=6 \text { and } m_{2}=7
\end{array}
$$

Again, using the section formula, we have

$$
\begin{aligned}
& x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \\
\Rightarrow \quad & x=\frac{6(-1)+7(-4)}{6+7}=\frac{-6-28}{13} \\
\Rightarrow \quad x & =\frac{-34}{13}
\end{aligned}
$$

Now,

$$
y=\frac{6(7)+7(-6)}{6+7}=\frac{42-42}{13}=0
$$

\therefore Hence, the required point of intersection is $\left(\frac{-34}{13}, 0\right)$.
Q11. Find the ratio in which the point $\mathrm{P}\left(\frac{3}{4}, \frac{5}{12}\right)$ divides the line segment joining the points $\mathrm{A}\left(\frac{1}{3}, \frac{3}{2}\right)$ and $\mathrm{B}(2,-5)$.
Sol. Let point P divides the line segment AB in the ratio $k: 1$, then

The coordinates of P , by section formula are

$$
\begin{array}{ll}
& x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}} \\
\therefore \quad & x=\frac{k(2)+1\left(\frac{1}{2}\right)}{k+1}
\end{array}
$$

$$
\begin{array}{rlrl}
& & \frac{3}{4} & =\frac{2 k+\frac{1}{2}}{k+1} \\
\Rightarrow & 8 k+2 & =3 k+3 \\
\Rightarrow & 8 k-3 k & =3-3 \\
\Rightarrow & 5 k & =1 \\
\Rightarrow & k & =\frac{1}{5} \\
\Rightarrow & m_{1} & =1 & \text { and } m_{2}=5 \\
\begin{array}{ll}
\text { Now, } \\
\Rightarrow & y
\end{array} & =\frac{m_{1}\left(y_{2}\right)+m_{2}\left(y_{1}\right)}{m_{1}+m_{2}} \\
\Rightarrow & \therefore y \text {-coordinate of P is }\left(\frac{5}{12}\right) & y & =\frac{1(-5)+5\left(\frac{3}{2}\right)}{1+5}=\frac{-5+\frac{15}{2}}{6} \\
& & =\frac{-10+15}{2} \\
\Rightarrow & y & =\frac{5}{2} \times \frac{1}{6}=\frac{5}{12}
\end{array}
$$

y-coordinate of P is $\left(\frac{5}{12}\right)$.
Hence, P divides AB in ratio $1: 5$.
Q12. If point $\mathrm{P}(9 a-2,-b)$ divides the line segment joining the points $\mathrm{A}(3 a+1,-3)$ and $\mathrm{B}(8 a, 5)$ in the ratio $3: 1$, then find the values of a and b.
Sol. Point $\mathrm{P}(9 a-2,-b)$ divides the line segment joining the points $\mathrm{A}(3 a+1,-3)$ and $\mathrm{B}(8 a, 5)$ in the ratio $3: 1$. But, the coordinates of P are $(9 a-2,-b)$.

Using section formula, we have

$$
\begin{array}{rlrl}
9 a-2 & =\frac{3(8 a)+1(3 a+1)}{3+1} \\
& =\frac{24 a+3 a+1}{4} \\
\Rightarrow & & & \\
\Rightarrow 36 a-8 & =27 a+1 & \Rightarrow & -b=\frac{3(+5)+1(-3)}{3+1} \\
\Rightarrow 36 a-27 a & =8+1
\end{array}
$$

$$
\Rightarrow \quad 9 a=9
$$

$$
\Rightarrow \quad a=\frac{9}{9}=1
$$

Hence, $a=+1$ and $b=-3$

Q13. If (a, b) is mid-point of the line segment joining points $\mathrm{A}(10,-6)$ and $\mathrm{B}(k, 4)$ and $a-2 b=18$, then find the value of k and the distance AB .
Sol. Let $\mathrm{P}(a, b)$ is the mid-point of the line-segment joining the points $\mathrm{A}(10,-6)$ and $\mathrm{B}(k, 4)$. Therefore, $\mathrm{P}(a, b)$ divides the line segment joining the points $\mathrm{A}(10,-6)$ and $\mathrm{B}(k, 4)$ in the ratio $1: 1$.

$$
\begin{align*}
& \Rightarrow \quad a=\frac{10+k}{2} \quad \text { (I) and } \quad b=\frac{-6+4}{2} \\
& \Rightarrow \quad b=\frac{-2}{2} \\
& \Rightarrow \quad b=-1 \tag{II}\\
& \text { But } \\
& a-2 b=18 \\
& \Rightarrow \quad a-2(-1)=18 \\
& \Rightarrow \quad a=18-2 \Rightarrow a=16 \\
& \text { But, } \quad a=\frac{10+k}{2} \\
& \text { [From (I)] } \\
& \Rightarrow \quad 16=\frac{10+k}{2} \\
& \Rightarrow \quad 10+k=32 \\
& \Rightarrow \quad k=32-10 \\
& \Rightarrow \quad k=22
\end{align*}
$$

Now, the co-ordinates of A and B are given by $A(10,-6)$ and $B(22,4)$.

$$
\begin{array}{rlrl}
\therefore & \mathrm{AB}^{2} & =(22-10)^{2}+(4+6)^{2} \\
& & =12^{2}+10^{2}=144+100 \\
\Rightarrow & \mathrm{AB}^{2} & =244 \\
\Rightarrow & & \mathrm{AB} & =2 \sqrt{61} \text { units }
\end{array}
$$

Hence, the required value of $k=22, a=16, b=-1$ and $A B=2 \sqrt{61}$ units . Q14. If the centre of circle is $(2 a, a-7)$ then find the values of a if the circle passes through the point $(11,-9)$ and has diameter $10 \sqrt{2}$ units.
Sol. Let $\mathrm{C}(2 a, a-7)$ be the centre of the circle and it passes through the point $\mathrm{P}(11,-9)$.

| \therefore | $\mathrm{PQ}=10 \sqrt{2}$ |
| :--- | ---: | :--- |
| \Rightarrow | $\mathrm{CP}=5 \sqrt{2}$ |
| \Rightarrow | $\mathrm{CP}^{2}=(5 \sqrt{2})^{2}=50$ |
| \Rightarrow | $(2 a-11)^{2}+(a-7+9)^{2}=50$ |
| \Rightarrow | $(2 a)^{2}+(11)^{2}-2(2 a)(11)+(a+2)^{2}=50$ |
| \Rightarrow | $4 a^{2}+121-44 a+(a)^{2}+(2)^{2}+2(a)(2)=50$ |
| \Rightarrow | $5 a^{2}-40 a+125=50$ |
| \Rightarrow | $a^{2}-8 a+25=10$ |
| \Rightarrow | $a^{2}-8 a+25-10=0$ |

```
\(\Rightarrow \quad a^{2}-8 a+15=0\)
\(\Rightarrow \quad a^{2}-5 a-3 a+15=0\)
\(\Rightarrow \quad a(a-5)-3(a-5)=0\)
\(\Rightarrow \quad(a-5)(a-3)=0\)
\(\Rightarrow \quad a-5=0 \quad\) or \(a-3=0\)
\(\Rightarrow \quad a=5\) or \(a=3\)
```

Hence, the required values of a are 5 and 3 .
Q15. The line segment joining the points $\mathrm{A}(3,2)$ and $\mathrm{B}(5,1)$ is divided at the point P in the ratio of $1: 2$ and it lies on the line $3 x-18 y+k=0$.
Find the value of k.
Sol.

P divides AB in the ratio 1:2. Then, the coordinates of $\mathrm{P}(x, y)$ are given by

$$
\begin{aligned}
& x & =\frac{m_{1}\left(x_{2}\right)+m_{2}\left(x_{1}\right)}{m_{1}+m_{2}} \text { and } & y=\frac{m_{1}\left(y_{2}\right)+m_{2}\left(y_{1}\right)}{m_{1}+m_{2}} \\
\Rightarrow & x=\frac{1(5)+2(3)}{1+2}=\frac{5+6}{3} & \Rightarrow & y=\frac{1(1)+2(2)}{1+2}=\frac{1+4}{3} \\
\Rightarrow & x & =\frac{11}{3} & \Rightarrow
\end{aligned}
$$

But, $\mathrm{P}\left(\frac{11}{3}, \frac{5}{3}\right) \mathrm{P}(x, y)$ lies on the line $3 x-18 y+k=0$
$\therefore \quad 3\left(\frac{11}{3}\right)-18\left(\frac{5}{3}\right)+k=0$
$\Rightarrow \quad \frac{33}{3}-\frac{90}{3}+k=0$
$\Rightarrow \quad 33-90+3 k=0$
$\Rightarrow \quad 3 k=90-33$
$\Rightarrow \quad 3 k=57$
$\Rightarrow \quad k=\frac{57}{3}$
$\Rightarrow \quad k=19$
Hence, the required value of $k=19$.
Q16. If $\mathrm{D}\left(\frac{-1}{2}, \frac{5}{2}\right), \mathrm{E}(7,3)$ and $\mathrm{F}\left(\frac{7}{2}, \frac{7}{2}\right)$ are the mid-points of sides of $\triangle A B C$, find the area of $\triangle A B C$.

Sol. In $\triangle A B C, D$ is mid point of $B C$, E is mid point of $A C$, and F is mid point of AB.

$$
\begin{aligned}
\therefore \quad \Delta \mathrm{DEF} & \cong \Delta \mathrm{AFE}
\end{aligned} \cong \begin{aligned}
& \cong \mathrm{FBD} \\
& \cong \Delta \mathrm{EDC}
\end{aligned}
$$

So, area of $\triangle \mathrm{ABC}=4$ (area of $\triangle \mathrm{DEF}$) The mid-points of sides of $\triangle A B C$ are
 given by $\mathrm{D}\left(\frac{-1}{2}, \frac{5}{2}\right), \quad \mathrm{E}(7,3)$, and $\mathrm{F}\left(\frac{7}{2}, \frac{7}{2}\right)$.

$$
\begin{aligned}
\therefore \quad \text { Area } \triangle \mathrm{DEF} & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}\left[-\frac{1}{2}\left(3-\frac{7}{2}\right)+7\left(\frac{7}{2}-\frac{5}{2}\right)+\frac{7}{2}\left(\frac{5}{2}-3\right)\right] \\
& =\frac{1}{2}\left[-\frac{1}{2}\left(\frac{-1}{2}\right)+7(1)+\frac{7}{2}\left(\frac{-1}{2}\right)\right] \\
& =\frac{1}{2}\left[\frac{1}{4}+7-\frac{7}{4}\right] \\
& =\frac{1}{2}\left[\frac{1+28-7}{4}\right] \\
& =\frac{1}{2}\left(\frac{29-7}{4}\right) \\
& =\frac{22}{8}=\frac{11}{4}
\end{aligned}
$$

$\therefore \quad$ Area of $\triangle \mathrm{ABC}=4 \times$ Area $\triangle \mathrm{DEF}$

$$
\begin{aligned}
& =4 \times \frac{11}{4} \\
& =11 \text { square units }
\end{aligned}
$$

Hence, the required area of $\triangle \mathrm{ABC}$ is 11 square units.
Q17. The points $\mathrm{A}(2,9), \mathrm{B}(a, 5)$ and $\mathrm{C}(5,5)$ are the vertices of a $\triangle \mathrm{ABC}$ right angled at B. Find the values of a and hence the area of $\triangle A B C$.
Sol. $\triangle \mathrm{ABC}$ is right angled at B .

$$
\begin{array}{rlrl}
\therefore & \text { By Pythagoras theorem, } \\
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AC}^{2} \\
\mathrm{AB}^{2} & =\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2} \\
\Rightarrow \quad & \mathrm{AB}^{2} & =(a-2)^{2}+(5-9)^{2} \\
\Rightarrow \quad & \mathrm{AB}^{2} & =(a)^{2}+(2)^{2}-2(a)(2)+(-4)^{2} \\
& & =a^{2}+4-4 a+16 \tag{5,5}\\
\Rightarrow \quad & \mathrm{AB}^{2} & =a^{2}-4 a+20
\end{array}
$$

If $a=5$ then $\mathrm{B}(5,5)$ and $\mathrm{C}(5,5)$ and $\mathrm{BC}=0$, which is not possible. Hence, $a=2$.
Now,

$$
\begin{aligned}
\mathrm{AB}^{2} & =a^{2}-4 a+20 \\
& =(2)^{2}-4(2)+20 \\
& =4-8+20
\end{aligned}
$$

$\Rightarrow \quad \mathrm{AB}^{2}=24-8$
$\Rightarrow \quad \mathrm{AB}^{2}=16$
$\Rightarrow \quad \mathrm{AB}=4$ units
And,

$$
\mathrm{BC}^{2}=a^{2}+25-10 a
$$

$$
=(2)^{2}+25-10(2)
$$

$$
[\because a=2]
$$

$$
=4+25-20=29-20=9
$$

$\Rightarrow \quad \mathrm{BC}^{2}=9$
$\Rightarrow \quad \mathrm{BC}=3$ units
$\therefore \quad$ Area of right angled triangle $\mathrm{ABC}=\frac{1}{2}$ base \times altitude

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{BC} \times \mathrm{AB} \\
& =\frac{1}{2} \times 3 \times 4 \\
& =6 \text { square units }
\end{aligned}
$$

Hence, the value of $a=2$ and area of $\triangle \mathrm{ABC}$ is 6 sq. units.
Q18. Find the coordinates of the point R on the line segment joining the points $P(-1,3)$ and $Q(2,5)$ such that $P R=\frac{3}{5} P Q$.

$$
\begin{align*}
& \mathrm{BC}^{2}=(a-5)^{2}+(5-5)^{2} \\
& =(a)^{2}+(5)^{2}-2(a)(5)+0^{2} \\
& \Rightarrow \quad \mathrm{BC}^{2}=a^{2}+25-10 a \\
& A C^{2}=(5-2)^{2}+(5-9)^{2} \\
& =3^{2}+(-4)^{2} \\
& =9+16=25 \\
& \Rightarrow \quad \mathrm{AC}=\sqrt{25}=5 \text { units } \\
& \therefore \quad a^{2}-4 a+20+a^{2}+25-10 a=(5)^{2} \tag{I}\\
& \Rightarrow \quad 2 a^{2}-14 a+45-25=0 \\
& \Rightarrow \quad 2 a^{2}-14 a+20=0 \\
& \Rightarrow \quad a^{2}-7 a+10=0 \\
& \Rightarrow \quad a^{2}-5 a-2 a+10=0 \\
& \Rightarrow \quad a(a-5)-2(a-5)=0 \\
& \Rightarrow \quad(a-5)(a-2)=0 \\
& \Rightarrow \quad a-5=0 \text { or } a-2=0 \\
& \Rightarrow \quad a=5 \text { or } \quad a=2
\end{align*}
$$

Sol. $\quad \mathrm{PR}=\frac{3}{5} \mathrm{PQ}$
[Given]
$\Rightarrow \quad \begin{array}{cc}\begin{array}{l}\frac{5}{3}=\frac{\mathrm{PQ}}{\mathrm{PR}} \\ \mathrm{P}(-1,3)\left(x_{1}, y_{1}\right)\end{array} & \\ & m_{1}=3 \\ & \mathrm{R}(x, y) \\ & \end{array}$
$\Rightarrow \quad \frac{5}{3}=\frac{\mathrm{PR}+\mathrm{RQ}}{\mathrm{PR}}$
$\Rightarrow \quad \frac{5}{3}=\frac{\mathrm{PR}}{\mathrm{PR}}+\frac{\mathrm{RQ}}{\mathrm{PR}}$
$\Rightarrow \quad \frac{\mathrm{QR}}{\mathrm{PR}}=\frac{5}{3}-1=\frac{5-3}{3}$
$\Rightarrow \quad \frac{\mathrm{QR}}{\mathrm{PR}}=\frac{2}{3}$
or

$$
\frac{\mathrm{PR}}{\mathrm{QR}}=\frac{3}{2} \quad \text { or } \quad \mathrm{PR}: \mathrm{QR}=3: 2
$$

$\therefore \quad m_{1}=3$ and $m_{2}=2$
Now, the coordinates of point R are given by

$$
\left.\left.\begin{array}{rlrl}
x & =\frac{m_{1}\left(x_{2}\right)+m_{2}\left(x_{1}\right)}{m_{1}+m_{2}} \text { and } & y & =\frac{m_{1}\left(y_{2}\right)+m_{2}\left(y_{1}\right)}{m_{1}+m_{2}} \\
\Rightarrow x & =\frac{3(2)+2(-1)}{3+2}=\frac{6-2}{5} & \Rightarrow & y
\end{array}\right) \frac{3(5)+2(3)}{3+2}=\frac{15+6}{5}\right)
$$

Hence, the required coordinates of R are $\left(\frac{4}{5}, \frac{21}{5}\right)$.
Q19. Find the value of k if the points $\mathrm{A}(k+1,2 k), \mathrm{B}(3 k, 2 k+3)$ and $\mathrm{C}(5 k-1,5 k)$ are collinear.
Sol. Points A, B, and C will be collinear if area of $\triangle \mathrm{ABC}=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
& \Rightarrow \quad \frac{1}{2}[(k+1)\{2 k+3-5 k\}+3 k\{5 k-2 k\}+(5 k-1)\{2 k-(2 k+3)\}]=0 \\
& \Rightarrow \quad(k+1)(-3 k+3)+3 k(3 k)+(5 k-1)(2 k-2 k-3)=0
\end{aligned}
$$

$\Rightarrow-3(k+1)(k-1)+3\left(3 k^{2}\right)-3(5 k-1)=0$
Divide by 3 on both sides, we have

$$
\begin{array}{rrrr}
& {\left[(k+1)(-k+1)+3 k^{2}+(5 k-1)(-1)\right]=0} \\
\Rightarrow & 1-k^{2}+3 k^{2}-5 k+1=0 \\
\Rightarrow & 2 k^{2}-5 k+2=0 \\
\Rightarrow & 2 k^{2}-4 k-1 k+2=0 \\
\Rightarrow & 2 k(k-2)-1(k-2)=0 \\
\Rightarrow & (k-2)(2 k-1)=0 & \\
\Rightarrow & k-2=0 & \text { or } & 2 k-1=0 \\
\Rightarrow & k & =2 & \text { or }
\end{array} 2 k=1
$$

Hence, the required value of k are 2 and $\frac{1}{2}$.
Q20. Find the ratio in which the line $2 x+3 y-5=0$ divides the line segment joining the points $(8,-9)$ and $(2,1)$. Also find the coordinates of the point of division.

Sol.

Let the line given by equation I divides AB at $\mathrm{P}(x, y)$ in the ratio $k: 1$. Then, using the section formula, the coordinates of P are given by

$$
\begin{array}{rlrlrl}
x & =\frac{m_{1}\left(x_{2}\right)+m_{2}\left(x_{1}\right)}{m_{1}+m_{2}} & \text { and } & y & =\frac{m_{1}\left(y_{2}\right)+m_{2}\left(y_{1}\right)}{m_{1}+m_{2}} \\
\Rightarrow & x & =\frac{k(2)+1(8)}{(k+1)} & \text { and } & y & =\frac{k(1)+1(-9)}{k+1} \\
\Rightarrow & x & =\frac{2 k+8}{k+1} & \text { and } & y & =\frac{k-9}{k+1}
\end{array}
$$

$\Rightarrow \mathrm{P}(x, y)=\left(\frac{2 k+8}{k+1}, \frac{k-9}{k+1}\right)$ lies on line I so P must satisfy equation (I)
So substitute $x=\frac{2 k+8}{k+1}$ and $y=\frac{k-9}{k+1}$ in equation I
$\Rightarrow \quad 2\left(\frac{2 k+8}{k+1}\right)+3\left(\frac{k-9}{k+1}\right)-5=0$

On multiplying by $(k+1)$ in above equation both sides, we get

$$
\begin{array}{lr}
& 2(2 k+8)+3(k-9)-5(k+1)=0 \\
\Rightarrow & 4 k+16+3 k-27-5 k-5=0 \\
\Rightarrow & 2 k-16=0 \\
\Rightarrow & k=\frac{16}{2}=8
\end{array}
$$

\therefore Point of intersection is given by $\mathrm{P}\left(\frac{2 k+8}{k+1}, \frac{k-9}{k+1}\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(\frac{2 \times 8+8}{8+1}, \frac{8-9}{8+1}\right) \\
& =\mathrm{P}\left(\frac{16+8}{9}, \frac{-1}{9}\right) \\
& =\mathrm{P}\left(\frac{24}{9}, \frac{-1}{9}\right) \\
& =\mathrm{P}\left(\frac{8}{3}, \frac{-1}{9}\right)
\end{aligned}
$$

Hence, line of eqn. (I) divides AB in ratio $8: 1$ at $\mathrm{P}\left(\frac{8}{3}, \frac{-1}{9}\right)$.

EXERCISE 7.4

Q1. If $(-4,3)$ and $(4,3)$ are two vertices of an equilateral triangle, find the coordinates of the third vertex, given that the origin lies in the interior of the triangle.
Sol. Let $\mathrm{A}(-4,3), \mathrm{B}(4,3)$ and $\mathrm{C}(x, y)$ are the three vertices of $\triangle \mathrm{ABC}$. As the triangle is equilateral,

$$
\text { so } \quad A C=B C=A B
$$

$$
\begin{equation*}
\text { or } \quad \mathrm{AC}^{2}=\mathrm{BC}^{2}=\mathrm{AB}^{2} \tag{I}
\end{equation*}
$$

Now, $\quad \mathrm{AB}^{2}=(4+4)^{2}+(3-3)^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=(8)^{2}=64$
$\Rightarrow \quad \mathrm{AB}=8$ units
$\mathrm{AC}^{2}=(x+4)^{2}+(y-3)^{2}$
$=(x)^{2}+(4)^{2}+2(x)(4)+(y)^{2}+(3)^{2}-2(y)(3)$
$=x^{2}+y^{2}+8 x-6 y+16+9$
$\Rightarrow \quad \mathrm{AC}^{2}=x^{2}+y^{2}+8 x-6 y+25$
$\mathrm{BC}^{2}=(x-4)^{2}+(y-3)^{2}$
$=(x)^{2}+(4)^{2}-2(x)(4)+(y)^{2}+(3)^{2}-2(y)(3)$
$=x^{2}+y^{2}-8 x-6 y+16+9$
$\Rightarrow \quad \mathrm{BC}^{2}=x^{2}+y^{2}-8 x-6 y+25$

```
Now, \(\quad \mathrm{AC}^{2}=\mathrm{AB}^{2}\)
\(\Rightarrow \quad x^{2}+y^{2}+8 x-6 y+25=64\)
\(\Rightarrow \quad x^{2}+y^{2}+8 x-6 y=64-25\)
\(\Rightarrow \quad x^{2}+y^{2}+8 x-6 y=39\)
Again, \(\quad \mathrm{BC}^{2}=\mathrm{AB}^{2}\)
\(\Rightarrow \quad x^{2}+y^{2}-8 x-6 y+25=64\)
\(\Rightarrow \quad x^{2}+y^{2}-8 x-6 y=64-25\)
\(\Rightarrow \quad x^{2}+y^{2}-8 x-6 y=39\)
Now, \(\quad A C^{2}=A B^{2}\)
\(\Rightarrow \quad x^{2}+y^{2}-8 x-6 y=64-25\)
\(\Rightarrow \quad x^{2}+y^{2}-8 x-6 y=39\)
```

[From (I)]
[From (III), (II)]
[From (I)]
[From (II), (IV)]

Subtracting (V) from (VI), we have

$$
\begin{gather*}
x^{2}+y^{2}-8 x-6 y=39 \tag{VI}\\
x^{2}+y^{2}+8 x-6 y=39 \tag{V}\\
-\quad-16 x=0
\end{gather*}
$$

$$
\Rightarrow \quad x=0
$$

Putting $x=0$ in (V), we have

$$
\begin{aligned}
& & (0)^{2}+y^{2}+8(0)-6 y & =39 \\
\Rightarrow & & y^{2}-6 y-39 & =0 \\
& & & =b^{2}-4 a c \\
& & & =(-6)^{2}-4(1)(-39)=36+156 \\
\Rightarrow & & \mathrm{D} & =192 \\
\Rightarrow & & \sqrt{\mathrm{D}} & =\sqrt{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3} \\
& \therefore & \sqrt{\mathrm{D}} & =8 \sqrt{3} \\
\Rightarrow & & y & =\frac{-b \pm \sqrt{D}}{2 a}=\frac{6 \pm 8 \sqrt{3}}{2 \times 1}=\frac{2(3 \pm 4 \sqrt{3})}{2} \\
\Rightarrow & & y_{1} & =3+4 \sqrt{3} \quad \text { and } \quad y_{2}=3-4 \sqrt{3}
\end{aligned}
$$

Hence, thethird vertex of $\triangle \mathrm{ABCmaybe} C(0,3+4 \sqrt{3})$ and $C^{\prime}(0,3-4 \sqrt{3})$.

$$
\begin{aligned}
& \text { Now, } \begin{aligned}
& C(0,3+4 \sqrt{3}) \\
&= C(0,3+4 \times 1.732) \\
&= C(0,3+6.9) \\
&=C(0,9.9) \\
& \text { and } C^{\prime}(0,3-4 \sqrt{3}) \\
&= C^{\prime}(0,3-4 \times 1.732) \\
&= C^{\prime}(0,3-6.9) \\
&= C^{\prime}(0,-3.9)
\end{aligned}
\end{aligned}
$$

So, the required point so that origin lies inside it is $(0,3-4 \sqrt{3})$.

Q2. $A(6,1), B(8,2)$ and $C(9,4)$ are three vertices of a parallelogram $A B C D$. If E is the mid point of $D C$, then find the area of $\triangle A D E$.
Sol. ABCD is a parallelogram so
[Mid point of diagonal BD] $=$ [Mid point of diagonal AC]
\therefore Mid point of $\mathrm{BD}=\left(\frac{x_{4}+8}{2}, \frac{y_{4}+2}{2}\right) \quad \mathrm{D}\left(x_{4}, y_{4}\right) \quad \mathrm{E}\left(8, \frac{7}{2}\right)$
and Mid point of $\mathrm{AC}=\left(\frac{6+9}{2}, \frac{1+4}{2}\right)$
$\Rightarrow \frac{x_{4}+8}{2}=\frac{15}{2} \quad$ and $\frac{y_{4}+2}{2}=\frac{5}{2}$
$\Rightarrow \quad x_{4}=15-8$ and $\quad y_{4}=5-2 A(6,1)$
$\Rightarrow \quad x_{4}=7 \quad$ and $\quad y_{4}=3$

$$
\therefore \quad \mathrm{D}=(7,3)
$$

$$
\text { Mid point of } \mathrm{DC} \text { is } \mathrm{E}\left(\frac{x_{4}+9}{2}, \frac{y_{4}+4}{2}\right)
$$

$$
=\mathrm{E}\left(\frac{7+9}{2}, \frac{3+4}{2}\right)
$$

$$
=\mathrm{E}\left(\frac{16}{2}, \frac{7}{2}\right)=\mathrm{E}\left(8, \frac{7}{2}\right)
$$

Now, Area of $\triangle \mathrm{ADE}=\frac{1}{2}\left[6\left(3-\frac{7}{2}\right)+7\left(\frac{7}{2}-1\right)+8(1-3)\right]$

$$
\begin{aligned}
& =\frac{1}{2}\left[6\left(\frac{-1}{2}\right)+7\left(\frac{5}{2}\right)+8(-2)\right] \\
& =\frac{1}{2}\left(3+\frac{35}{2}-16\right)=\frac{1}{2}\left(\frac{-6+35-32}{2}\right) \\
& =\frac{1}{2} \times \frac{(-3)}{2}=\frac{-3}{4} \text { sq units }=\frac{3}{4} \text { sq. units }
\end{aligned}
$$

[In magnitude]
Hence, the area of $\triangle \mathrm{ADE}$ is $\frac{3}{4}$ sq. units.
Q3. The points $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$ are the vertices of $\Delta \mathrm{ABC}$.
(i) The median from A meets BC at D. Find the coordinates of the point D.
(ii) Find the coordinates of the point P on AD such that $\mathrm{AP}: \mathrm{PD}=2: 1$.
(iii) Find the coordinates of points Q and R on medians BE and CF respectively such that $\mathrm{BQ}: \mathrm{QE}=2: 1$ and $\mathrm{CR}: \mathrm{RF}=2: 1$.
(iv) What are the coordinates of the centroid of the $\triangle \mathrm{ABC}$?

Sol. (i) Median from A meets BC at D i.e., D is the mid-point of BC .

So, the coordinates of D are given by $\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)$
(ii)

$$
\stackrel{\stackrel{\mathrm{A}\left(x_{1} y_{1}\right)}{m_{1}=2} \quad \mathrm{P}(x, y)}{m_{2}=1} \quad \mathrm{D}\left(\frac{x_{2}+x_{3}}{2}, \frac{y_{2}+y_{3}}{2}\right)
$$

The coordinates of the point P on AD such that $\mathrm{AP}: \mathrm{PD}=2: 1$ are given by

$$
\begin{array}{rlrl}
x & x=\frac{2\left(\frac{x_{2}+x_{3}}{2}\right)+1\left(x_{1}\right)}{2+1}, & y & =\frac{2\left(\frac{y_{2}+y_{3}}{2}\right)+1\left(y_{1}\right)}{2+1} \\
\Rightarrow x & x \frac{x_{2}+x_{3}+x_{1}}{3}, & y & =\frac{y_{2}+y_{3}+y_{1}}{3}
\end{array}
$$

$\therefore \mathrm{P}\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$ is the required point.
(iii) (a) Median BE meets the side AC at its mid-point E.
\therefore Coordinates of E are $\left(\frac{x_{1}+x_{3}}{2}, \frac{y_{1}+y_{3}}{2}\right)$.

Now, the coordinates of Q such that BE is median and $\mathrm{BQ}: \mathrm{QE}=2: 1$ are given by

$$
\begin{aligned}
x & =\frac{2\left(\frac{x_{1}+x_{3}}{2}\right)+1\left(x_{2}\right)}{2+1}, & y & =\frac{2\left(\frac{y_{1}+y_{3}}{2}\right)+1\left(y_{2}\right)}{2+1} \\
\Rightarrow x & =\frac{x_{1}+x_{3}+x_{2}}{3}, & y & =\frac{y_{1}+y_{3}+y_{2}}{3}
\end{aligned}
$$

$\therefore \quad$ The coordinates of point Q on median BE such at $\mathrm{QB}: \mathrm{QE}=2: 1$ are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$.
(b) Median CF meets the side AB at its mid-point F .
\therefore Coordinate of F are $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.

Now, the coordinates of R such that $C F$ is median and $C R: R F=2: 1$ are given by

$$
\begin{aligned}
& x=\frac{1\left(x_{3}\right)+2\left(\frac{x_{1}+x_{2}}{2}\right)}{1+2}, \\
& y=\frac{1\left(y_{3}\right)+2\left(\frac{y_{1}+y_{2}}{2}\right)}{1+2} \\
& \Rightarrow \quad x=\frac{x_{3}+x_{1}+x_{2}}{3}, \\
& y=\frac{y_{3}+y_{1}+y_{2}}{3}
\end{aligned}
$$

So, the coordinates of point R on the median CF such that $\mathrm{CR}: \mathrm{RF}=2: 1$ are $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
(iv) Coordinates of centroid G of $\triangle \mathrm{ABC}$ are

$$
\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

It is observed that coordinates of $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and G are same.
Hence, the medians intersect at the same point i.e., centroid which divides the medians in the ratio $2: 1$.
Q4. If the points $\mathrm{A}(1,-2), \mathrm{B}(2,3), \mathrm{C}(a, 2)$ and $\mathrm{D}(-4,-3)$ form a parallelogram, find the value of a and height of the parallelogram taking AB as base.
Sol. As ABCD is a parallelogram and diagonals of parallelogram bisect each other.

The mid points of diagonals of parallelogram will coincide i.e.,
Mid-point of diagonal $\mathrm{AC}=$ Mid-point of diagonal BD

$$
\begin{array}{rlrl}
\Rightarrow & \left(\frac{1+a}{2}, \frac{-2+2}{2}\right) & =\left(\frac{-4+2}{2}, \frac{-3+3}{2}\right) \\
\Rightarrow & & \left(\frac{1+a}{2}, 0\right) & =\left(\frac{-2}{2}, 0\right) \\
\Rightarrow & \frac{1+a}{2} & =\frac{-2}{2} \\
\Rightarrow & a & =-2-1=-3
\end{array}
$$

Hence, the value of a is -3 .
\quad Now, \quad Area of $\triangle \mathrm{ABD}=\frac{1}{2}$ base \times altitude
$\Rightarrow \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=\frac{1}{2} \mathrm{AB} \times h$
$\Rightarrow \frac{1}{2}[1\{3-(-3)\}+2\{-3-(-2)\}-4(-2-3)]=-\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\Rightarrow \quad \frac{1}{2}[(3+3)+2(-3+2)-4(-5)]=\frac{h}{2} \sqrt{(2-1)^{2}+(3+2)^{2}}$
$\Rightarrow \quad \frac{1}{2}[6+2(-1)+20]=\frac{h}{2} \sqrt{(1)^{2}+(5)^{2}}$
$\Rightarrow \quad \frac{1}{2}[6-2+20]=\frac{h}{2} \sqrt{1+25}$
$\Rightarrow \quad \frac{1}{2}[26-2]=\frac{h}{2} \sqrt{26}$
$\Rightarrow \quad h \sqrt{26}=24$
$\Rightarrow \quad h=\frac{24}{\sqrt{26}} \times \frac{\sqrt{26}}{\sqrt{26}}=\frac{24 \sqrt{26}}{26}$
$\Rightarrow \quad h=\frac{12}{13} \sqrt{26}$ units
Hence, the perpendicular distance between parallel sides $A B$ and $C D$ is $\frac{12 \sqrt{26}}{13}$ units.
Q5. Student of a school are standing in rows and columns in their playground for a drill practice. A, B, C, D are the positions of four students as shown in the figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B C and D ? If so, what should be his position?

Sol. Coordinates of A, B, C and D from graph are $A(3,5), B(7,9)$, $C(11,5)$, and $D(7,1)$.
To find the shape of $\square A B C D$:

$$
\begin{array}{lll}
& & \mathrm{AB}^{2}=(7-3)^{2}+(9-5)^{2}=4^{2}+4^{2}=4^{2}(1+1) \\
\Rightarrow & & \mathrm{AB}=4 \sqrt{2} \text { units } \\
& & \mathrm{BC}^{2}=(11-7)^{2}+(5-9)^{2}=(4)^{2}+(-4)^{2}=4^{2}(1+1) \\
& & \mathrm{BC}=4 \sqrt{2} \text { units } \\
& \Rightarrow & \mathrm{CD}^{2}=(7-11)^{2}+(1-5)^{2}=(-4)^{2}+(-4)^{2}=4^{2}+4^{2} \\
& & \mathrm{CD}=4 \sqrt{2} \text { units } \\
& \mathrm{DA}^{2}=(7-3)^{2}+(1-5)^{2}=4^{2}+(-4)^{2}=4^{2}+4^{2} \\
\therefore & & \mathrm{DA}=\sqrt{4^{2}(1+1)}=4 \sqrt{2} \text { units } \\
& & \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=4 \sqrt{2} \text { units. }
\end{array}
$$

So, ABCD will be either square or rhombus.
Now, Diagonal $A C=\sqrt{(11-3)^{2}+(5-5)^{2}}$
$\Rightarrow \quad \mathrm{AC}=\sqrt{(8)^{2}+(0)^{2}}$
$\Rightarrow \quad A C=8$ units
and diagonal $\mathrm{BD}=\sqrt{(7-7)^{2}+(1-9)^{2}}=\sqrt{(0)^{2}+(8)^{2}}=\sqrt{0+(8)^{2}}=\sqrt{8^{2}}$
$\Rightarrow \quad \mathrm{BD}=8$ units
$\therefore \quad$ Diagonal AC $=$ Diagonal BD

So, the given quadrilateral ABCD is a square. The point which is equidistant from point A, B, C, D of a square $A B C D$ will be at the intersecting point of diagonals and diagonals bisect each other.

Hence, the required point O equidistant from A, B, C, D is mid point of any diagonal $=\left(\frac{7+7}{2}, \frac{9+1}{2}\right)=\left(\frac{14}{2}, \frac{10}{2}\right)=(7,5)$.

Hence, the required point is $(7,5)$.
Q6. Ayush starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter's school and then reaches the office. What is the extra distance travelled by Ayush in reaching his office? (Assume that all distances covered are in straight lines). If the house is situated at $(2,4)$, bank at $(5,8)$ school at $(13,14)$ and office at $(13,26)$ and coordinates are in km .
Sol. Consider the coordinates of house $\mathrm{H}(2,4)$, bank $\mathrm{B}(5,8)$, school $\mathrm{S}(13,14)$ and office $\mathrm{O}(13,26)$.

$$
\begin{array}{rlrl}
& & \text { Distance } \mathrm{HB}^{2} & =(5-2)^{2}+(8-4)^{2}=3^{2}+4^{2}=9+16=25 \\
\Rightarrow & & \mathrm{HB} & =5 \mathrm{~km} \\
\Rightarrow & & \text { Distance } \mathrm{BS}^{2} & =(13-5)^{2}+(14-8)^{2}=8^{2}+6^{2}=64+36 \\
\Rightarrow & \mathrm{BS}^{2} & =100 \\
\Rightarrow & & \mathrm{BS} & =10 \mathrm{~km} \\
\Rightarrow & & \text { Distance } \mathrm{SO}^{2} & =(13-13)^{2}+(26-14)^{2}=0^{2}+12^{2}=12^{2} \\
\Rightarrow & \mathrm{SO} & =12 \mathrm{~km}
\end{array}
$$

Total distance travelled by Ayush from house to bank to school and then to office

$$
\begin{aligned}
& =\mathrm{HB}+\mathrm{BS}+\mathrm{SO} \\
& =5+10+12=27 \mathrm{~km}
\end{aligned}
$$

Direct distance from house to office $=\mathrm{HO}$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{HO}^{2}=(13-2)^{2}+(26-4)^{2}=(11)^{2}+(22)^{2} \\
\Rightarrow & \mathrm{HO}^{2}=121+484 \\
\Rightarrow & \mathrm{HO}=\sqrt{605}=24.6 \mathrm{~km}
\end{array}
$$

So, extra distance travelled by Ayush $=27 \mathrm{~km}-24.6 \mathrm{~km}=2.4 \mathrm{~km}$.
Hence, extra distance travelled by Ayush $=2.4 \mathrm{~km}$

