Name Jatu Son

_Class & Section _Z - A Roll No. _24.

FIRST TERMINAL EXAMINATION-2013-2014

Class-X

Subject-Mathematics

Time Allowed: 3 Hrs.

M.M.: 90

Do not write any answers on the question paper. Check the total marks.

General Instructions:

- 1. All questions are compulsory.
- 2. The question paper consists of 34 questions divided into four sections A, B, C and D.
- Section A comprises of 8 questions of 1 mark each. For each question four alternatives
 have been provided of which only one is correct. You have to select the correct option.
- 4. Section B comprises of 6 questions of 2 marks each.
- 5. Section C comprises of 10 questions of 3 marks each.
- 6. Section D comprises of 10 questions of 4 marks each.

Section-A

1. The lines representing the linear equations 2x - y = 3 and 4x - y = 5

(a) intersect at a point

(b) are parallel

(c) are coincident

(d) intersect at exactly two points

A rational number which has non-terminating decimal representation is:

(a)
$$\frac{111}{125}$$

(b)
$$\frac{127}{8}$$

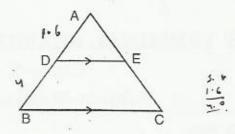
(c)
$$\frac{19}{5^3 \times 2^2}$$

$$(4) \frac{9}{455}$$

If the polynomial p(x) is divisible by x-4 and 2 is a zero of p(x) then which of the following is a factor of p(x)?

(a)
$$x^2 + 6x - 8$$

(b)
$$x^2 - 6x - 8$$


$$(c)$$
 $x^2 - 6x + 8$

(d)
$$x^2 + 6x + 8$$

152/BVN

MATHS-X-1

- 4. In the following figure, DE \parallel BC, if AB = 5.6 cm, AD = 1.6 cm then AE : EC is :
 - (a) 2:5
 - (b) 2:7
 - (c) 5:2
 - (d) 7:2

- $5/n^2-1$ is divisible by 8, if n is:
 - (a) an integer
 - (a) an odd integer

- (b) a natural number
- (d) an even integer
- 6. If D is the mid-point of BC, the value of $\frac{\tan x^{\circ}}{\tan y^{\circ}}$ is:

- (b) 2
- (c) 1
- (d) ½

- AC AC
- CD = B9
- 7. If $x = 3 \sec^2 \theta 1$ and $y = \tan^2 \theta 2$ then x 3y is:
 - (a) 3

(b) 8

(c) 4

(d) 5

- 8. The mode is equal to:
 - (a) 2 median 3 mean

(b) 3 median + 2 mean

(c) 3 median - 2 mean

- (d) 2 median + 3 mean
- Section-B
- 9. Prove that $2\sqrt{3} \sqrt{5}$ is irrational.
- 10. If α and β are the zeroes of the polynomial $p(x) = 2x^2 + 15x 3$, then find the value of $\alpha^2 + \beta^2$.
- 11. Find the value of k, if $\frac{\cos 30^{\circ}}{\sin 60^{\circ}} + \frac{2\cos \theta}{\sin (90 \theta)} = \frac{k}{2}$

12. Solve :
$$37x + 43y = 123$$

$$43x + 37y = 117$$
OR

Solve:
$$x + \frac{6}{y} = 6$$

$$3x - \frac{8}{y} = 5$$

13. ABCD is a trapezium in which AB || DC and its diagonals intersect each other at O.

Prove that
$$\frac{AO}{BO} = \frac{CO}{OD}$$

14. The following distribution gives the number of people examined in the age group 12 to 37 under an initiative by medical students of a certain college to provide free medical checkup in the slum areas.

Age group	12-17	17-22	22-27	27-32	32–37
No. of people examined	2	22	19	14	13

(a) Construct the cumulative frequency distribution.

(b) What values are shown by the students?

Section-C

Divide $5x^3 - 13x^2 + 21x - 14$ by $3 - 2x + x^2$ and verify the division algorithm.

16. If $\sin \theta - \cos \theta = \sqrt{2} \sin (90 - \theta)$, then find the value of $\tan \theta$.

OR

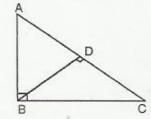
Find the value of cosec 60° geometrically.

17 The HCF of 18 and 24 gives the number of hours that a student of class X puts in to teach under privileged children in an NGO in a week.

(a) Calculate the number of hours using Euclid's division algorithm.

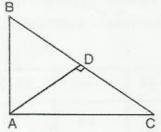
(b) What values are shown by the student?

of


BL and CM are medians of $\triangle ABC$, right angled at A. Prove that $4(BL^2+CM^2)=5BC^2$

OR

In the given figure, AB = a, BC = b, AC = c and BD = p. Show that


(i)
$$ab = pc$$

(ii)
$$\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$$

19. If three times the larger of two numbers is divided by the smaller one, we get 4 as the quotient and 3 as the remainder. Also, if 7 times the smaller number is divided by the larger one, we get 5 as the quotient and 1 as the remainder. Find the numbers.

20. In the given figure AD \perp BC and AD² = BD·CD. Show that \angle A = 90°.

21, Calculate the median of the distribution:

Class	0-10	10-20	20-30	30-40	40-50
Frequency	5	25	25	18	7

22. If $\sin (A - B) = \frac{1}{2}$ and $\cos (A + B) = \frac{1}{2}$; A > B and $0 < A + B < 90^{\circ}$ then find A and B.

23. Find the mode of the following data:

Height (in cm)	160-162	163–165	166–168	169–171	172-174
No. of students	15	118	142	127	18

Use Euclid's division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

ıt

25. State and prove Thales theorem.

OR

In ΔPQR , right angled at Q, X and Y are points on PQ and QR such that PX : XQ = 1:2 and XY:YR = 2:1. Prove that

$$9 (PY^2 + XR^2) = 13PR^2$$

26. Determine the solution of the following system of linear equations graphically:

$$4x - 5y - 20 = 0$$

$$3x + 5y - 15 = 0$$

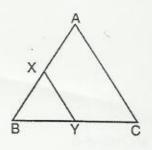
Also, determine the area of the triangle formed by these lines and the y-axis.

27. If $\tan \theta + \sin \theta = m$ and $\tan \theta - \sin \theta = n$ show that $m^2 - n^2 = 4\sqrt{mn}$

OR

If
$$\sec\theta + \tan\theta = p$$
, show that $\frac{p^2 - 1}{p^2 + 1} = \sin\theta$

28. Obtain all zeroes of $x^4 + 4x^3 - 2x^2 - 20x - 15$ if one of the zeroes is $\sqrt{5}$


29. Calculate the mean for the following data:

Class	0-10	10-20	20-30	30-40	40-50	50-60
Frequency	14	8	15	21	9	8

Also, if the median is 29, find the mode.

30 Prove that $(\sec\theta - \tan\theta)^2 (1 + \sin\theta) = (1 - \sin\theta)$

31. In the given figure, the line segment XY || AC of \triangle ABC and divides the triangle into two parts of equal area. Prove that AX : AB = $(2 - \sqrt{2})$: 2

MATHS-X-5

- 32. A boat goes 16 km upstream and 24 km downstream in 6 hours. Also it covers 12 km upstream and 36 km downstream in the same time. Find the speed of the boat in still water and that of the stream.
- 33. Prove that $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}} + \sqrt{\frac{1-\cos\theta}{1+\cos\theta}} = 2\csc\theta$
- 34. Convert the following distribution into a "less than type" cumulative frequency distribution and draw its ogive. Also find the median from the ogive.

Class	0-10	10-20	20-30	30-40	40-50	50-60
frequency	7	. 10	23	51	6	3