EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Find the term independent of $x, x \neq 0$ in the expansion of

$$
\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{15}
$$

Sol. General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
& ={ }^{15} \mathrm{C}_{r}\left(\frac{3 x^{2}}{2}\right)^{15-r}\left(-\frac{1}{3 x}\right)^{r}={ }^{15} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{15-r} \cdot(x)^{30-2 r} \cdot\left(-\frac{1}{3}\right)^{r} \cdot \frac{1}{x^{r}} \\
& ={ }^{15} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{15-r} \cdot(x)^{30-2 r-r}(-1)^{r} \cdot \frac{1}{(3)^{r}} \\
& ={ }^{15} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{15-r} \cdot x^{30-3 r}(-1)^{r} \cdot \frac{1}{(3)^{r}}
\end{aligned}
$$

for getting the term independent of x,

$$
30-3 r=0 \Rightarrow r=10
$$

On putting the value of r in the above expression, we get

$$
\begin{aligned}
& ={ }^{15} C_{10}\left(\frac{3}{2}\right)^{15-10}(-1)^{10} \cdot \frac{1}{(3)^{10}}={ }^{15} \mathrm{C}_{10} \frac{(3)^{5}}{(2)^{5}} \cdot \frac{1}{(3)^{10}} \\
& ={ }^{15} \mathrm{C}_{10} \cdot \frac{1}{(2)^{5} \cdot(3)^{5}}={ }^{15} \mathrm{C}_{10}\left(\frac{1}{6}\right)^{5}
\end{aligned}
$$

Hence, the required term $={ }^{15} \mathrm{C}_{10}\left(\frac{1}{6}\right)^{5}$
Q2. If the term free from x in the expansion of $\left(\sqrt{x}-\frac{\mathrm{K}}{x^{2}}\right)^{10}$ is 405, find the value of K.
Sol. The given expression is $\left(\sqrt{x}-\frac{K}{x^{2}}\right)^{10}$
General term $\quad \mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
={ }^{10} \mathrm{C}_{r}(\sqrt{x})^{10-r}\left(\frac{-\mathrm{K}}{x^{2}}\right)^{r}={ }^{10} \mathrm{C}_{r}(x)^{\frac{10-r}{2}}(-\mathrm{K})^{r}\left(\frac{1}{x^{2 r}}\right)
$$

$$
\begin{aligned}
& ={ }^{10} \mathrm{C}_{r}(x)^{\frac{10-r}{2}-2 r}(-\mathrm{K})^{r}={ }^{10} \mathrm{C}_{r}(x)^{\frac{10-r-4 r}{2}}(-\mathrm{K})^{r} \\
& ={ }^{10} \mathrm{C}_{r}(x)^{\frac{10-5 r}{2}}(-\mathrm{K})^{r}
\end{aligned}
$$

For getting term free from $x, \frac{10-5 r}{2}=0$
$\Rightarrow r=2$
On putting the value of r in the above expression, we get ${ }^{10} \mathrm{C}_{2}(-\mathrm{K})^{2}$
According to the condition of the question, we have

$$
\begin{aligned}
& { }^{10} \mathrm{C}_{2} \mathrm{~K}^{2}=405 \Rightarrow \frac{10 \cdot 9}{2.1} \mathrm{~K}^{2}=405 \\
& \Rightarrow \quad 45 \mathrm{~K}^{2}=405 \quad \Rightarrow \quad \mathrm{~K}^{2}=\frac{405}{45}=9 \\
& \therefore \quad \mathrm{~K}= \pm 3
\end{aligned}
$$

Hence, the value of $\mathrm{K}= \pm 3$
Q3. Find the coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)$ $(1-x)^{16}$
Sol. The given expression is $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$

$$
\begin{aligned}
= & \left(1-3 x+7 x^{2}\right)\left[{ }^{16} \mathrm{C}_{0}(1)^{16}(-x)^{0}+{ }^{16} \mathrm{C}_{1}(1)^{15}(-x)\right. \\
& \left.+{ }^{16} \mathrm{C}_{2}(1)^{14}(-x)^{2}+\cdots\right] \\
= & \left(1-3 x+7 x^{2}\right)\left(1-16 x+120 x^{2} \ldots\right)
\end{aligned}
$$

Collecting the term containing x, we get $-16 x-3 x=-19 x$
Hence, the coefficient of $x=-19$
Q4. Find the term independent of x in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
Sol. Given expression is $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
General term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
& ={ }^{15} C_{r}(3 x)^{15-r}\left(-\frac{2}{x^{2}}\right)^{r}={ }^{15} \mathrm{C}_{r}(3)^{15-r} \cdot x^{15-r}(-2)^{r} \cdot \frac{1}{x^{2 r}} \\
& ={ }^{15} C_{r}(3)^{15-r} \cdot x^{15-r-2 r} \cdot(-2)^{r}={ }^{15} \mathrm{C}_{r}(3)^{15-r} \cdot x^{15-3 r}(-2)^{r}
\end{aligned}
$$

For getting a term independent of x, put $15-3 r=0 \Rightarrow r=5$
$\therefore \quad$ The required term is ${ }^{15} \mathrm{C}_{5}(3)^{15-5}(-2)^{5}$

$$
\begin{aligned}
& =-{ }^{15} C_{5}(3)^{10}(2)^{5}=-\frac{15 \times 14 \times 13 \times 12 \times 11}{5 \times 4 \times 3 \times 2 \times 1} \cdot(3)^{10}(2)^{5} \\
& =-7 \times 13 \times 3 \times 11 .(3)^{10}(2)^{5}=-3003(3)^{10}(2)^{5}
\end{aligned}
$$

Hence, the required term $=-3003(3)^{10}(2)^{5}$

Q5. Find the middle term (Terms) in the expansion of
(i) $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
(ii) $\left(3 x-\frac{x^{3}}{6}\right)^{9}$

Sol. (i) Given expression is $\left(\frac{x}{a}-\frac{a}{x}\right)^{10}$
Number of terms $=10+1=11($ odd $)$
$\therefore \quad$ Middle term $=\left(\frac{n+1}{2}\right)^{\text {th }}$ term $=\frac{11+1}{2}=\frac{12}{2}=6$ th term
General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
\Rightarrow \mathrm{T}_{5+1} & ={ }^{10} \mathrm{C}_{5}\left(\frac{x}{a}\right)^{10-5}\left(-\frac{a}{x}\right)^{5}=-{ }^{10} \mathrm{C}_{5} \frac{x^{5}}{a^{5}} \cdot \frac{a^{5}}{x^{5}}=-{ }^{10} \mathrm{C}_{5} \\
& =-\frac{10 \times 9 \times 8 \times 7 \times 6}{5 \times 4 \times 3 \times 2 \times 1}=-9 \times 7 \times 4=-252
\end{aligned}
$$

Hence, the required middle term $=-252$
(ii) Given expression is $\left(3 x-\frac{x^{3}}{6}\right)^{9}$

Number of terms $=9+1=10$ (even)
$\therefore \quad$ Middle terms are $\frac{n^{\text {th }}}{2}$ term and $\left(\frac{n}{2}+1\right)^{\text {th }}$ term
$=\frac{10}{2}^{\text {th }}=5^{\text {th }}$ term and $(5+1)=6^{\text {th }}$ term
General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$
$\therefore \mathrm{T}_{5}=\mathrm{T}_{4+1}={ }^{9} \mathrm{C}_{4}(3 x)^{9-4}\left(-\frac{x^{3}}{6}\right)^{4}$
$={ }^{9} \mathrm{C}_{4}(3)^{5} \cdot x^{5}\left(-\frac{1}{6}\right)^{4} \cdot x^{12}$
$=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times \frac{3 \times 3 \times 3 \times 3 \times 3}{6 \times 6 \times 6 \times 6} x^{17}$
$=\frac{189}{8} x^{17}$
Now, $\mathrm{T}_{6}=\mathrm{T}_{5+1}={ }^{9} \mathrm{C}_{5}(3 x)^{9-5}\left(-\frac{x^{3}}{6}\right)^{5}$

$$
={ }^{9} \mathrm{C}_{5}(3)^{4} x^{4}\left(-\frac{1}{6}\right)^{5} \cdot x^{15}
$$

$$
=\frac{9 \times 8 \times 7 \times 6 \times 5}{5 \times 4 \times 3 \times 2 \times 1}(3)^{4}\left(-\frac{1}{6}\right)^{5} \cdot x^{19}=-\frac{21}{16} x^{19}
$$

Hence, the required middle terms are $\frac{189}{8} x^{17}$ and $-\frac{21}{16} x^{19}$
Q6. Find the coefficient of x^{15} in the expansion of $\left(x-x^{2}\right)^{10}$.
Sol. The given expression is $\left(x-x^{2}\right)^{10}$
General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
& ={ }^{10} \mathrm{C}_{r}(x)^{10-r}\left(-x^{2}\right)^{r}={ }^{10} \mathrm{C}_{r}(x)^{10-r}(-1)^{r} \cdot\left(x^{2}\right)^{r} \\
& =(-1)^{r} \cdot{ }^{10} \mathrm{C}_{r}(x)^{10-r+2 r}=(-1)^{r} \cdot{ }^{10} \mathrm{C}_{r}(x)^{10+r}
\end{aligned}
$$

To find the coefficient of x^{15}, Put $10+r=15 \Rightarrow r=5$
\therefore Coefficient of $x^{15}=(-1)^{5}{ }^{10} C_{5}=-{ }^{10} C_{5}=-252$
Hence, the required coefficient $=-252$
Q7. Find the coefficient of $\frac{1}{x^{17}}$ in the expansion of $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$
Sol. The given expression is $\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$
General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}={ }^{15} \mathrm{C}_{r}\left(x^{4}\right)^{15-r}\left(-\frac{1}{x^{3}}\right)^{r}$

$$
\begin{aligned}
& ={ }^{15} \mathrm{C}_{r}(x)^{60-4 r}(-1)^{r} \cdot \frac{1}{x^{3 r}}={ }^{15} \mathrm{C}_{r}(-1)^{r} \cdot \frac{1}{x^{3 r-60+4 r}} \\
& ={ }^{15} \mathrm{C}_{r}(-1)^{r} \cdot \frac{1}{x^{7 r-60}}
\end{aligned}
$$

To find the coefficient of $\frac{1}{x^{17}}$, Put $7 r-60=17$

$$
\begin{array}{ll}
\Rightarrow & 7 r \\
\Rightarrow & =60+17 \Rightarrow 7 r=77 \\
\therefore & r
\end{array}
$$

Putting the value of r in the above expression, we get

$$
\begin{aligned}
& ={ }^{15} \mathrm{C}_{11}(-1)^{11} \cdot \frac{1}{x^{17}}=-{ }^{15} \mathrm{C}_{4} \cdot \frac{1}{x^{17}} \\
& =-\frac{15 \times 14 \times 13 \times 12}{4 \times 3 \times 2 \times 1} \cdot \frac{1}{x^{17}}=-1365 \cdot \frac{1}{x^{17}}
\end{aligned}
$$

Hence, the coefficient of $\frac{1}{x^{17}}=-1365$
Q8. Find the sixth term of the expansion $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$, if the binomial coefficient of the third term from the end is 45 .
Sol. The given expression is $\left(y^{1 / 2}+x^{1 / 3}\right)^{n}$, since the binomial coefficient of third term from the end $=$ Binomial coefficient of third term from the beginning $={ }^{n} \mathrm{C}_{2}$

```
\(\therefore \quad{ }^{n} C_{2}=45\)
\(\Rightarrow \quad \frac{n(n-1)}{2}=45 \quad \Rightarrow \quad n^{2}-n=90\)
\(\Rightarrow \quad n^{2}-n-90=0 \quad \Rightarrow \quad n^{2}-10 n+9 n-90=0\)
\(\Rightarrow n(n-10)+9(n-10)=0 \Rightarrow(n-10)(n+9)=0\)
\(\Rightarrow \quad n=10, n=-9 \quad \Rightarrow \quad n=10, n \neq-9\)
```

So, the given expression becomes $\left(y^{1 / 2}+x^{1 / 3}\right)^{10}$
Sixth term is this expression

$$
\begin{aligned}
\mathrm{T}_{6} & =\mathrm{T}_{5+1}={ }^{10} \mathrm{C}_{5}\left(y^{1 / 2}\right)^{10-5}\left(x^{1 / 3}\right)^{5}={ }^{10} \mathrm{C}_{5} y^{5 / 2} \cdot x^{5 / 3} \\
& =252 y^{5 / 2} x^{5 / 3}
\end{aligned}
$$

Hence, the required term $=252 y^{5 / 2} \cdot x^{5 / 3}$
Q9. Find the value of r if the coefficients of $(2 r+4)^{\text {th }}$ and $(r-2)^{\text {th }}$ terms in the expansion of $(1+x)^{18}$ are equal
Sol. General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$
For coefficient of $(2 r+4)^{\text {th }}$ term, we have

$$
\mathrm{T}_{2 r+4}=\mathrm{T}_{2 r+3+1}={ }^{18} \mathrm{C}_{2 r+3}(1)^{18-2 r-3} \cdot x^{2 r+3}
$$

$\therefore \quad$ Coefficient of $(2 r+4)^{\text {th }}$ term $={ }^{18} \mathrm{C}_{2 r+3}$
Similarly, $\quad \mathrm{T}_{r-2}=\mathrm{T}_{r-3+1}={ }^{18} \mathrm{C}_{r-3}(1)^{18-r+3} \cdot x^{r-3}$
$\therefore \quad$ Coefficient of $(r-2)^{\text {th }}$ term $={ }^{18} \mathrm{C}_{r-3}$
As per the condition of the questions, we have ${ }^{18} \mathrm{C}_{2 r+3}={ }^{18} \mathrm{C}_{r-3}$
$\Rightarrow \quad 2 r+3+r-3=18 \quad \Rightarrow \quad 3 r=18 \quad \Rightarrow \quad r=6$
Q10. If the coefficient of second, third and fourth terms in the expansion of $(1+x)^{2 n}$ are in A.P., show that $2 n^{2}-9 n+7=0$
Sol. Given expression $=(1+x)^{2 n}$
Coefficient of second term $={ }^{2 n} \mathrm{C}_{1}$
Coefficient of third term $={ }^{2 n} \mathrm{C}_{2}$
and coefficient of fourth term $={ }^{2 n} \mathrm{C}_{3}$
As the given condition, ${ }^{2 n} \mathrm{C}_{1},{ }^{2 n} \mathrm{C}_{2}$ and ${ }^{2 n} \mathrm{C}_{3}$ are in A.P.

$$
\begin{array}{rlrl}
\therefore & & { }^{2 n} \mathrm{C}_{2}-{ }^{2{ }^{2 n}} \mathrm{C}_{1}= & ={ }^{2 n} \mathrm{C}_{3}-{ }^{2 n} \mathrm{C}_{2} \\
\Rightarrow & 2 \cdot \frac{2 n!}{2!(2 n-2)!} & =\frac{{ }^{2 n} \mathrm{C}_{1}+{ }^{2 n} \mathrm{C}_{3}}{(2 n-1)!}+\frac{2 n!}{3!(2 n-3)!} \\
\Rightarrow & 2\left[\frac{2 n(2 n-1)(2 n-2)!}{2 \times 1 \times(2 n-2)!}\right]= & \frac{2 n(2 n-1)!}{(2 n-1)!}+ \\
& \frac{2 n(2 n-1)(2 n-2)(2 n-3)!}{3 \times 2 \times 1 \times(2 n-3)!} \\
\Rightarrow & n(2 n-1)= & n+\frac{n(2 n-1)(2 n-2)}{6} \\
\Rightarrow & & 2 n-1= & 1+\frac{(2 n-1)(2 n-2)}{6}
\end{array}
$$

$$
\begin{aligned}
\Rightarrow & 12 n-6 & =6+4 n^{2}-4 n-2 n+2 \\
\Rightarrow & 12 n-12 & =4 n^{2}-6 n+2 \\
\Rightarrow & 4 n^{2}-6 n-12 n+2+12 & =0 \\
\Rightarrow & 4 n^{2}-18 n+14 & =0 \\
\Rightarrow & 2 n^{2}-9 n+7 & =0
\end{aligned}
$$

Hence proved.
Q11. Find the coefficient of x^{4} in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{11}$.
Sol. Given expression is $\left(1+x+x^{2}+x^{3}\right)^{11}$

$$
\begin{aligned}
& =\left[(1+x)+x^{2}(1+x)\right]^{11}=\left[(1+x)\left(1+x^{2}\right)\right]^{11} \\
& =(1+x)^{11} \cdot\left(1+x^{2}\right)^{11}
\end{aligned}
$$

Expanding the above expression, we get
$\left({ }^{11} \mathrm{C}_{0}+{ }^{11} \mathrm{C}_{1} x+{ }^{11} \mathrm{C}_{2} x^{2}+{ }^{11} \mathrm{C}_{3} x^{3}+{ }^{11} \mathrm{C}_{4} x^{4}+\cdots\right)$.
$\left({ }^{11} \mathrm{C}_{0}+{ }^{11} \mathrm{C}_{1} x^{2}+{ }^{11} \mathrm{C}_{2} x^{4}+\right)$
$=\left(1+11 x+55 x^{2}+165 x^{3}+330 x^{4} \cdots\right) \cdot\left(1+11 x^{2}+55 x^{4}+\cdots\right)$
Collecting the terms containing x^{4}, we get

$$
(55+605+330) x^{4}=990 x^{4}
$$

Hence, the coefficient of $x^{4}=990$

LONG ANSWER TYPE QUESTIONS

Q12. If P is a real number and if the middle term in the expansion of $\left(\frac{\mathrm{P}}{2}+2\right)^{8}$ is 1120 , find P .
Sol. Given expression is $\left(\frac{\mathrm{P}}{2}+2\right)^{8}$
Number of terms $=8+1=9$ (odd)
$\therefore \quad$ Middle term $=\frac{9+1}{2}$ th term $=5$ th term
$\therefore \quad \mathrm{T}_{5}=\mathrm{T}_{4+1}={ }^{8} \mathrm{C}_{4}\left(\frac{\mathrm{P}}{2}\right)^{8-4}$ (2) ${ }^{4}$
$={ }^{8} \mathrm{C}_{4} \frac{\mathrm{P}^{4}}{2^{4}} \times 2^{4}={ }^{8} \mathrm{C}_{4} \mathrm{P}^{4}$
Now

$$
{ }^{8} \mathrm{C}_{4} \mathrm{P}^{4}=1120 \Rightarrow \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} \mathrm{P}^{4}=1120
$$

$\Rightarrow \quad 70 \mathrm{P}^{4}=1120$
$\Rightarrow \quad \mathrm{P}^{4}=\frac{1120}{70}=16 \quad \Rightarrow \quad \mathrm{P}^{4}=2^{4} \Rightarrow \mathrm{P}= \pm 2$
Hence, the required value of $\mathrm{P}= \pm 2$
Q13. Show that the middle term in the expansion of $\left(x-\frac{1}{x}\right)^{2 n}$ is $\frac{1 \times 3 \times 5 \times \cdots(2 n-1)}{n!} \times(-2)^{n}$

Sol. Given expression is $\left(x-\frac{1}{x}\right)^{2 n}$
Number of terms $=2 n+1($ odd $)$
$\therefore \quad$ Middle term $=\frac{2 n+1+1}{2}$ th term i.e., $(n+1)^{\text {th }}$ term
General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r}(x)^{n-r}(y)^{r}$

$$
\begin{aligned}
& \therefore \mathrm{T}_{n+1}={ }^{2 n} \mathrm{C}_{n}(x)^{2 n-n}\left(-\frac{1}{x}\right)^{n}={ }^{2 n} \mathrm{C}_{n}(x)^{n}(-1)^{n} \cdot \frac{1}{x^{n}} \\
&=(-1)^{n} \cdot{ }^{2 n} \mathrm{C}_{n}=(-1)^{n} \cdot \frac{2 n!}{n!(2 n-n)!} \\
&=(-1)^{n} \cdot \frac{2 n!}{n!n!}=(-1)^{n} \cdot \frac{2 n(2 n-1)(2 n-2)(2 n-3) \cdots 1}{n!n(n-1)(n-2)(n-3) \cdots 1} \\
&=(-1)^{n} \frac{2 n \cdot(2 n-1) \cdot 2(n-1)(2 n-3) \cdots 1}{n!n(n-1)(n-2)(n-3) \cdots 1} \\
&=\frac{(-1)^{n}}{} \cdot 2^{n} \cdot[n(n-1)(n-2) \cdots] \cdot[(2 n-1) \cdot(2 n-3) \cdots 5 \cdot 3 \cdot 1] \\
& n!\cdot n(n-1)(n-2) \cdots 1 \\
&=\frac{(-2)^{n}[(2 n-1)(2 n-3) \cdots 5 \cdot 3 \cdot 1]}{n!} \\
&=\frac{1 \times 3 \times 5 \times \cdots(2 n-1)}{n!} \times(-2)^{n}
\end{aligned}
$$

Hence, the middle term $=\frac{1 \times 3 \times 5 \times \cdots(2 n-1)}{n!} \times(-2)^{n}$
Q14. Find n in the binomial $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$ if the ratio of 7 th term from the beginning to the 7 th term from the end is $1 / 6$.
Sol. The given expression is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$

$$
=\left(2^{1 / 3}+\frac{1}{3^{1 / 3}}\right)^{n}
$$

General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
\mathrm{T}_{7}=\mathrm{T}_{6+1} & ={ }^{n} \mathrm{C}_{6}\left(2^{1 / 3}\right)^{n-6}\left(\frac{1}{3^{1 / 3}}\right)^{6} \\
& ={ }^{n} \mathrm{C}_{6}(2)^{n-6 / 3} \cdot\left(\frac{1}{3^{2}}\right)={ }^{n} \mathrm{C}_{6}(2)^{n-6 / 3} \cdot(3)^{-2}
\end{aligned}
$$

7 th term from the end $=(n-7+2)^{\text {th }}$ term from the beginning

$$
=(n-5)^{\mathrm{th}} \text { term from the beginning }
$$

So,

$$
\begin{aligned}
\mathrm{T}_{n-6+1} & ={ }^{n} \mathrm{C}_{n-6}\left(2^{1 / 3}\right)^{n-n+6}\left(\frac{1}{3^{1 / 3}}\right)^{n-6} \\
& ={ }^{n} \mathrm{C}_{n-6}(2)^{2} \cdot\left(\frac{1}{3^{n-6 / 3}}\right)={ }^{n} \mathrm{C}_{n-6}(2)^{2}(3)^{6-n / 3}
\end{aligned}
$$

According to the question, we get

$$
\begin{aligned}
& \frac{{ }^{n} C_{6}(2)^{\frac{n-6}{3}}(3)^{-2}}{{ }^{n} C_{n-6}(2)^{2}(3)^{\frac{6-n}{3}}}=\frac{1}{6} \\
\Rightarrow & \frac{{ }^{n} C_{n-6}(2)^{\frac{n-6}{3}}(3)^{-2}}{{ }^{n} C_{n-6}(2)^{2}(3)^{\frac{6-n}{3}}}=\frac{1}{6} \Rightarrow(2)^{\frac{n-6}{3}-2} \cdot(3)^{-2-\frac{6-n}{3}}=\frac{1}{6} \\
\Rightarrow & (2)^{\frac{n-6-6}{3}} \cdot(3)^{\frac{-6-6+n}{3}}=\frac{1}{6} \Rightarrow(2)^{\frac{n-12}{3}} \cdot(3)^{\frac{n-12}{3}}=(6)^{-1} \\
\Rightarrow & \quad(6)^{\frac{n-12}{3}}=(6)^{-1} \\
\Rightarrow & \frac{n-12}{3}=-1 \Rightarrow n-12=-3 \Rightarrow n=12-3=9
\end{aligned}
$$

Hence, the required value of n is 9 .
Q15. In the expansion of $(x+a)^{n}$ if the sum of odd terms is denoted by O and the sum of even terms by E then prove that
(i) $\mathrm{O}^{2}-\mathrm{E}^{2}=\left(x^{2}-a^{2}\right)^{n}$
(ii) $4 \mathrm{OE}=(x+a)^{2 n}-(x-a)^{2 n}$

Sol. Given expression is $(x+a)^{n}$
$(x+a)^{n}={ }^{n} \mathrm{C}_{0} x^{n} a^{0}+{ }^{n} \mathrm{C}_{1} x^{n-1} a+{ }^{n} \mathrm{C}_{2} x^{n-2} a^{2}+{ }^{n} \mathrm{C}_{3} x^{n-3} a^{3}+\cdots+{ }^{n} \mathrm{C}_{n} a^{n}$
Sum of odd terms,

$$
\mathrm{O}={ }^{n} \mathrm{C}_{0} x^{n}+{ }^{n} \mathrm{C}_{2} x^{n-2} a^{2}+{ }^{n} \mathrm{C}_{4} x^{n-4} a^{4}+\cdots
$$

and the sum of even terms,

$$
\begin{equation*}
\mathrm{E}={ }^{n} \mathrm{C}_{1} x^{n-1} \cdot a+{ }^{n} \mathrm{C}_{3} x^{n-3} a^{3}+{ }^{n} \mathrm{C}_{5} x^{n-5} a^{5}+\cdots \tag{i}
\end{equation*}
$$

Now $\quad(x+a)^{n}=\mathrm{O}+\mathrm{E}$
Similarly $\quad(x-a)^{n}=\mathrm{O}-\mathrm{E}$
Multiplying eq. (i) and eq. (ii), we get,

$$
\begin{equation*}
(x+a)^{n}(x-a)^{n}=(\mathrm{O}+\mathrm{E})(\mathrm{O}-\mathrm{E}) \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad\left(x^{2}-a^{2}\right)^{n}=\mathrm{O}^{2}-\mathrm{E}^{2}$
Hence $\quad \mathrm{O}^{2}-\mathrm{E}^{2}=\left(x^{2}-a^{2}\right)^{n}$
(ii) $4 \mathrm{OE}=(\mathrm{O}+\mathrm{E})^{2}-(\mathrm{O}-\mathrm{E})^{2}$

$$
\begin{aligned}
& =\left[(x+a)^{n}\right]^{2}-\left[(x-a)^{n}\right]^{2} \\
& =[x+a]^{2 n}-[x-a]^{2 n}
\end{aligned}
$$

Hence, $4 \mathrm{OE}=(x+a)^{2 n}-(x-a)^{2 n}$

Q16. If x^{p} occurs in the expansion of $\left(x^{2}+\frac{1}{x}\right)^{2 n}$, then prove that its coefficient is $\frac{2 n!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}$
Sol. Given expression is $\left(x^{2}+\frac{1}{x}\right)^{2 n}$
General terms, $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
& ={ }^{2 n} \mathrm{C}_{r}\left(x^{2}\right)^{2 n-r} \cdot\left(\frac{1}{x}\right)^{r}={ }^{2 n} \mathrm{C}_{r}(x)^{4 n-2 r} \cdot \frac{1}{x^{r}} \\
& ={ }^{2 n} \mathrm{C}_{r}(x)^{4 n-2 r-r}={ }^{2 n} \mathrm{C}_{r}(x)^{4 n-3 r}
\end{aligned}
$$

If x^{p} occurs in $\left(x^{2}+\frac{1}{x}\right)^{2 n}$
then

$$
4 n-3 r=p \Rightarrow 3 r=4 n-p
$$

$\Rightarrow \quad r=\frac{4 n-p}{3}$
$\therefore \quad$ Coefficient of $x^{p}={ }^{2 n} \mathrm{C}_{r}={ }^{2 n} \mathrm{C}_{\frac{4 n-p}{}}^{3}$

$$
\begin{aligned}
& =\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(2 n-\frac{4 n-p}{3}\right)!}=\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{6 n-4 n+p}{3}\right)!} \\
& =\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}
\end{aligned}
$$

Hence, the coefficient of $x^{p}=\frac{(2 n)!}{\left(\frac{4 n-p}{3}\right)!\left(\frac{2 n+p}{3}\right)!}$
Q17. Find the term independent of x in the expansion of

$$
\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}
$$

Sol. Given expression is $\left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$
Let us consider $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$
General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{9} \mathrm{C}_{r}\left(\frac{3}{2} x^{2}\right)^{9-r}\left(-\frac{1}{3 x}\right)^{r} \\
& ={ }^{9} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{9-r}(x)^{18-2 r} \cdot\left(-\frac{1}{3}\right)^{r} \cdot \frac{1}{(x)^{r}} \\
& ={ }^{9} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{9-r}(x)^{18-2 r-r} \cdot\left(-\frac{1}{3}\right)^{r} \\
& ={ }^{9} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} \cdot x^{18-3 r}
\end{aligned}
$$

So, the general term in the expansion of

$$
\begin{aligned}
& \left(1+x+2 x^{3}\right)\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9} \\
= & { }^{9} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} \cdot(x)^{18-3 r}+{ }^{9} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} \cdot(x)^{19-3 r} \\
+ & 2 \cdot{ }^{9} \mathrm{C}_{r}\left(\frac{3}{2}\right)^{9-r}\left(-\frac{1}{3}\right)^{r} \cdot(x)^{21-3 r}
\end{aligned}
$$

For getting the term independent of x,
Put $18-3 r=0,19-3 r=0$ and $21-3 r=0$, we get

$$
r=6, r=\frac{19}{3} \text { and } r=7
$$

The possible value of r are 6 and 7

$$
\left(\because \quad r \neq \frac{19}{3}\right)
$$

$\therefore \quad$ The term independent of x is

$$
\begin{aligned}
& ={ }^{9} \mathrm{C}_{6}\left(\frac{3}{2}\right)^{9-6}\left(-\frac{1}{3}\right)^{6}+2 \cdot{ }^{9} \mathrm{C}_{7}\left(\frac{3}{2}\right)^{9-7}\left(-\frac{1}{3}\right)^{7} \\
& =\frac{9 \times 8 \times 7 \times 6!}{3 \times 2 \times 1 \times 6!} \cdot \frac{3^{3}}{2^{3}} \cdot \frac{1}{3^{6}}-2 \cdot \frac{9 \times 8 \times 7!}{7!2 \times 1} \cdot \frac{3^{2}}{2^{2}} \cdot \frac{1}{3^{7}} \\
& =\frac{84}{8} \cdot \frac{1}{3^{3}}-\frac{36}{4} \cdot \frac{2}{3^{5}}=\frac{7}{18}-\frac{2}{27}=\frac{21-4}{54}=\frac{17}{54}
\end{aligned}
$$

Hence, the required term $=\frac{17}{54}$

OBJECTIVE TYPE QUESTIONS

Q18. The total number of terms in the expansion of $(x+a)^{100}+$ $(x-a)^{100}$ after simplification is
(a) 50
(b) 202
(c) 51
(d) None of these

Sol. Number of terms in the expansion of $(x+a)^{100}=101$
Number of terms in the expansion of $(x-a)^{100}=101$

Now 50 terms of expansion will cancel out with negative 50 terms of $(x-a)^{100}$
So, the remaining 51 terms of first expansion will be added to 51 terms of other.
Therefore, the number of terms $=51$
Hence, the correct option is (c).
Q19. If the integers $r>1, n>2$ and coefficients of $(3 r)^{\text {th }}$ and $(r+2)^{\text {th }}$ terms in the Binomial expansion of $(1+x)^{2 n}$ are equal, then
(a) $n=2 r$
(b) $n=3 r$
(c) $n=2 r+1$
(d) none of these

Sol. Given that $r>1$ and $n>2$
then

$$
\begin{aligned}
\text { then } & \mathrm{T}_{3 r} & =\mathrm{T}_{3 r-1+1}={ }^{2 n} \mathrm{C}_{3 r-1} \cdot x^{3 r-1} \\
\text { and } & \mathrm{T}_{r+2} & =T_{r+1+1}={ }^{2 n} \mathrm{C}_{r+1} x^{r+1}
\end{aligned}
$$

As per the question, we have

$$
\begin{array}{rlrll}
& & { }^{2 n} \mathrm{C}_{3 r-1} & ={ }^{2 n} \mathrm{C}_{r+1} \\
\Rightarrow & 3 r-1+r+1 & =2 n \\
\Rightarrow & & 4 r & =2 n \\
n & =2 r
\end{array}
$$

Hence, the correct option is (a).
Q20. The two successive terms in the expansion of $(1+x)^{24}$ whose coefficients are in the ratio $1: 4$ are
(a) $3^{\text {rd }}$ and $4^{\text {th }}$
(b) $4^{\text {th }}$ and $5^{\text {th }}$
(c) $5^{\text {th }}$ and $6^{\text {th }}$
(d) $6^{\text {th }}$ and $7^{\text {th }}$

Sol. Let $r^{\text {th }}$ and $(r+1)^{\text {th }}$ be two successive terms in the expansion $(1+x)^{24}$

$$
\begin{array}{ll}
\therefore & \mathrm{T}_{r+1}={ }^{24} \mathrm{C}_{r} \cdot x^{r} \\
& \mathrm{~T}_{r+2}=\mathrm{T}_{r+1+1}={ }^{24} \mathrm{C}_{r+1} x^{r+1}
\end{array}
$$

As per the question, we have $\frac{{ }^{24} \mathrm{C}_{r}}{24!{ }^{24} \mathrm{C}_{r+1}}=\frac{1}{4}$

$$
\begin{array}{ll}
\Rightarrow & \frac{\frac{24!}{r!(24-r)!}}{\frac{24!}{(r+1)!(24-r-1)!}}
\end{array}=\frac{1}{4} 1
$$

$$
\begin{aligned}
& \Rightarrow \quad 5 r=20 \Rightarrow r=4 \\
& \therefore \quad \mathrm{~T}_{4+1}=\mathrm{T}_{5} \text { and } \mathrm{T}_{4+2}=\mathrm{T}_{6}
\end{aligned}
$$

Hence, the correct option is (c).
Q21. The coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ are in the ratio.
(a) $1: 2$
(b) $1: 3$
(c) $3: 1$
(d) $2: 1$

Sol. General Term $\mathrm{T}_{r+1}={ }^{n} \mathrm{C}_{r} x^{n-r} y^{r}$
In the expansion of $(1+x)^{2 n}$, we get $\mathrm{T}_{r+1}={ }^{2 n} \mathrm{C}_{r} x^{r}$
To get the coefficient of x^{n}, put $r=n$
$\therefore \quad$ Coefficient of $x^{n}={ }^{2 n} C_{n}$
In the expansion of $(1+x)^{2 n-1}$, we get $\mathrm{T}_{r+1}={ }^{2 n-1} \mathrm{C}_{r} x^{r}$
$\therefore \quad$ Coefficient of x^{n} is ${ }^{2 n-1} \mathrm{C}_{n-1}$
The required ratio is $\frac{{ }^{2 n} C_{n}}{{ }^{2 n-1} C_{n-1}}$

$$
\begin{aligned}
& =\frac{\frac{2 n!}{n!(n!)}}{\frac{(2 n-1)!}{(n-1)!(2 n-1-n+1)!}}=\frac{\frac{2 n!}{n!\cdot n!}}{\frac{(2 n-1)!}{(n-1)!(n!)}} \\
& =\frac{2 n!}{n!n!} \times \frac{(n-1)!\cdot n!}{(2 n-1)!}=\frac{2 n(2 n-1)!}{n!n(n-1)!} \times \frac{(n-1)!\cdot n!}{(2 n-1)!} \\
& =\frac{2}{1}=2: 1
\end{aligned}
$$

Hence, the correct option is (d).
Q22. If the coefficients of 2 nd, 3 rd and the 4 th terms in the expansion of $(1+x)^{n}$ are in A.P. Then value of n is
(a) 2
(b) 7
(c) 1
(d) 14

Sol. Given expression is $(1+x)^{n}$

$$
(1+x)^{n}={ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1} x+{ }^{n} \mathrm{C}_{2} x^{2}+{ }^{n} \mathrm{C}_{3} x^{3}+\ldots{ }^{n} \mathrm{C}_{n} x^{n}
$$

Here, coefficient of 2 nd term $={ }^{n} \mathrm{C}_{1}$
Coefficient of 3rd term $={ }^{n} \mathrm{C}_{2}$
and coefficient of 4th term $={ }^{n} \mathrm{C}_{3}$
Given that ${ }^{n} \mathrm{C}_{1},{ }^{n} \mathrm{C}_{2}$ and ${ }^{n} \mathrm{C}_{3}$ are in A.P.

$$
\begin{array}{ll}
\therefore & 2 \cdot{ }^{n} \mathrm{C}_{2}={ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{3} \\
\Rightarrow & 2 \cdot \frac{n(n-1)}{2}=n+\frac{n(n-1)(n-2)}{3 \cdot 2 \cdot 1} \\
\Rightarrow & n(n-1)=n+\frac{n(n-1)(n-2)}{6} \\
\Rightarrow & n-1=1+\frac{(n-1)(n-2)}{6}
\end{array}
$$

$$
\begin{array}{lrl}
\Rightarrow & 6 n-6 & =6+n^{2}-3 n+2 \\
\Rightarrow & n^{2}-3 n-6 n+14 & =0 \Rightarrow n^{2}-9 n+14=0 \\
\Rightarrow & n^{2}-7 n-2 n+14 & =0 \Rightarrow n(n-7)-2(n-7)=0 \\
\Rightarrow & (n-2)(n-7) & =0 \Rightarrow n=2,7 \Rightarrow n=7
\end{array}
$$

whereas $n=2$ is not possible
Hence, the correct option is (b).
Q23. If A and B are coefficient of x^{n} is the expansions of $(1+x)^{2 n}$ and $(1+x)^{2 n-1}$ respectively, then A / B equals
(a) 1
(b) 2
(c) $1 / 2$
(d) $1 / n$

Sol. Given expression is $(1+x)^{2 n}$

$$
\mathrm{T}_{r+1}={ }^{2 n} \mathrm{C}_{r} x^{r}
$$

$\therefore \quad$ Coefficient of $x^{n}={ }^{2 n} \mathrm{C}_{n}=\mathrm{A} \quad$ (Given)
In the expression $(1+x)^{2 n-1}$

$$
\mathrm{T}_{r+1}={ }^{2 n-1} \mathrm{C}_{r} x^{r}
$$

\therefore Coefficient of $x^{n}={ }^{2 n-1} \mathrm{C}_{n}=\mathrm{B} \quad$ (Given)
So, $\quad \frac{\mathrm{A}}{\mathrm{B}}=\frac{{ }^{2 n} \mathrm{C}_{n}}{{ }^{2 n-1} \mathrm{C}_{n}}=\frac{{ }^{2 n} \mathrm{C}_{n}}{{ }^{2 n-1} \mathrm{C}_{n}}=\frac{2}{1}$
[from Q. no. 21]
Hence, the correct option is (b).
Q24. If the middle term of $\left(\frac{1}{x}+x \sin x\right)^{10}$ is equal to $7 \frac{7}{8}$, then value of x is
(a) $2 n \pi+\frac{\pi}{6}$
(b) $n \pi+\frac{\pi}{6}$
(c) $n \pi+(-1)^{n} \frac{\pi}{6}$
(d) $n \pi+(-1)^{n} \frac{\pi}{3}$

Sol. Given expression is $\left(\frac{1}{x}+x \sin x\right)^{10}$
Number of terms $=10+1=11$ odd

$$
\begin{aligned}
& \therefore \quad \text { Middle term }=\frac{11+1}{2} \text { th term }=6 \text { th term } \\
& \therefore \mathrm{T}_{6}=\mathrm{T}_{5+1}={ }^{10} \mathrm{C}_{5}\left(\frac{1}{x}\right)^{10-5}(x \sin x)^{5} \\
& \therefore \quad{ }^{10} \mathrm{C}_{5}\left(\frac{1}{x}\right)^{5} \cdot x^{5} \cdot \sin ^{5} x=7 \frac{7}{8} \Rightarrow{ }^{10} \mathrm{C}_{5} \cdot \sin ^{5} x=\frac{63}{8} \\
& \Rightarrow \\
& \Rightarrow \quad \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \sin ^{5} x=\frac{63}{8} \Rightarrow 252 \cdot \sin ^{5} x=\frac{63}{8} \\
& \Rightarrow \quad \sin ^{5} x=\frac{63}{8 \times 252} \Rightarrow \sin ^{5} x=\frac{1}{32}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & \sin ^{5} x & =\left(\frac{1}{2}\right)^{5} \Rightarrow \sin x=\frac{1}{2} \\
\Rightarrow & & \sin x & =\sin \frac{\pi}{6} \\
\therefore & & x & =n \pi+(-1)^{n} \cdot \frac{\pi}{6}
\end{array}
$$

Hence, the correct option is (c).

FILL IN THE BLANKS

Q25. The largest coefficient in the expansion of $(1+x)^{30}$ is
Sol. Here $n=30$ which is even
$\therefore \quad$ the largest coefficient in $(1+x)^{n}={ }^{n} C_{n / 2}$
So, the largest coefficient in $(1+x){ }^{30}={ }^{30} \mathrm{C}_{15}$
Hence, the value of the filler is ${ }^{30} \mathrm{C}_{15}$.
Q26. The number of terms in the expansion of $(x+y+z)^{n}$
Sol. The expression $(x+y+z)^{n}$ can be written a $[x+(y+z)]^{n}$

$$
\begin{aligned}
\therefore \quad[x+(y+z)]^{n}= & { }^{n} \mathrm{C}_{0} x^{n}(y+z)^{0}+{ }^{n} \mathrm{C}_{1}(x)^{n-1}(y+z) \\
& +{ }^{n} \mathrm{C}_{2}(x)^{n-2}(y+z)^{2}+\cdots+{ }^{n} \mathrm{C}_{n}(y+z)^{n}
\end{aligned}
$$

$\therefore \quad$ Number of terms $1+2+3+4+\cdots(n+1)$

$$
=\frac{(n+1)(n+2)}{2}
$$

Hence, the value of the filler is $\frac{(n+1)(n+2)}{2}$
Q27. In the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{16}$, the value of constant term is
Sol. Let T_{r+1} be the constant term in the expansion of $\left(x^{2}-\frac{1}{x^{2}}\right)^{16}$

$$
\begin{aligned}
\therefore \quad \mathrm{T}_{r+1} & ={ }^{16} \mathrm{C}_{r}\left(x^{2}\right)^{16-r}\left(\frac{-1}{x^{2}}\right)^{r}={ }^{16} \mathrm{C}_{r}(x)^{32-2 r}(-1)^{r} \cdot \frac{1}{x^{2 r}} \\
& =(-1)^{r} \cdot{ }^{16} \mathrm{C}_{r}(x)^{32-2 r-2 r} \Rightarrow(-1)^{r} \cdot{ }^{16} \mathrm{C}_{r}(x)^{32-4 r}
\end{aligned}
$$

For getting constant term, $32-4 r=0$

$$
\begin{aligned}
\Rightarrow & & =r=8 \\
\therefore & \mathrm{~T}_{r+1} & =(-1)^{8} \cdot{ }^{16} \mathrm{C}_{8}={ }^{16} \mathrm{C}_{8}
\end{aligned}
$$

Hence, the value of the filler is ${ }^{16} \mathrm{C}_{8}$.
Q28. If the seventh transform the beginning and the end in the expansion of $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$ are equal, then n equals \qquad

Sol. The given expansion is $\left(\sqrt[3]{2}+\frac{1}{\sqrt[3]{3}}\right)^{n}$

$$
\therefore \quad \mathrm{T}_{7}=\mathrm{T}_{6+1}={ }^{n} \mathrm{C}_{6}\left(2^{1 / 3}\right)^{n-6} \cdot \frac{1}{\left(3^{1 / 3}\right)^{6}}={ }^{n} \mathrm{C}_{6}(2)^{\frac{n-6}{3}} \cdot \frac{1}{(3)^{2}}
$$

Now the T_{7} from the end $=\mathrm{T}_{7}$ from the beginning in $\left(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{2}\right)^{n}$.

$$
\therefore \quad \mathrm{T}_{7}=\mathrm{T}_{6+1}={ }^{n} \mathrm{C}_{6}\left(\frac{1}{3^{1 / 3}}\right)^{n-6} \cdot\left(2^{1 / 3}\right)^{6}
$$

As per the questions, we get

$$
\left.\begin{array}{rlrl}
& & { }^{n} \mathrm{C}_{6}(2)^{\frac{n-6}{3}} \cdot\left(\frac{1}{3^{2}}\right) & ={ }^{n} \mathrm{C}_{6} \frac{1}{3^{\frac{n-6}{3}}} \cdot(2)^{2} \\
& \Rightarrow & \left(2^{\frac{n-6}{3}} \cdot(3)^{-2}\right. & =(3)^{-\left(\frac{n-6}{3}\right)} \cdot(2)^{2} \\
\Rightarrow & & (2)^{\frac{n-6}{3}-2} \cdot(3)^{-2+\frac{n-6}{3}} & =1 \\
\Rightarrow & & 2^{\frac{n-12}{3}} \cdot(3)^{\frac{n-12}{3}} & =1 \\
\Rightarrow & & & (6)^{\frac{n-12}{3}}
\end{array}=(6)^{0}\right)
$$

Hence, the value of the filler is 12 .
Q29. The coefficient of $a^{-6} b^{4}$ in the expansion of $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$ is
Sol. The given expansion is $\left(\frac{1}{a}-\frac{2 b}{3}\right)^{10}$ from $a^{-6} b^{4}$, we can take $r=4$

$$
\begin{aligned}
\therefore \quad \mathrm{T}_{5}=\mathrm{T}_{4+1} & ={ }^{10} C_{4}\left(\frac{1}{a}\right)^{10-4}\left(-\frac{2 b}{3}\right)^{4}={ }^{10} \mathrm{C}_{4}\left(\frac{1}{a}\right)^{6}\left(\frac{-2}{3}\right)^{4} \cdot b^{4} \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} \times \frac{16}{81} \cdot a^{-6} b^{4}=210 \times \frac{16}{81} a^{-6} b^{4} \\
& =\frac{1120}{27} a^{-6} b^{4}
\end{aligned}
$$

Hence, the value of the filler $=\frac{1120}{27}$

Q30. Middle term in the expansion of $\left(a^{3}+b a\right)^{28}$ is \qquad
Sol. Number of term in the expansion $\left(a^{3}+b a\right)^{28}=28+1=29$ (odd)
$\therefore \quad$ Middle term $=\frac{29+1}{2}=15$ th term

$$
\begin{aligned}
\therefore \quad \mathrm{T}_{15}=\mathrm{T}_{14+1} & ={ }^{28} \mathrm{C}_{14}\left(a^{3}\right)^{28-14} \cdot(b a)^{14}={ }^{28} \mathrm{C}_{14}(a)^{42} \cdot b^{14} \cdot a^{14} \\
& ={ }^{28} \mathrm{C}_{14} a^{56} b^{14}
\end{aligned}
$$

Hence, the value of the filler is ${ }^{28} \mathrm{C}_{14} a^{56} b^{14}$.
Q31. The ratio of the coefficient of x^{p} and x^{q} in the expansion of $(1+x)^{p+q}$ is \qquad -.

Sol. Given expansion is $(1+x)^{p+q}$

$$
\mathrm{T}_{r+1}={ }^{p+q} \mathrm{C}_{r} x^{r}
$$

Put $r=p \quad={ }^{p+q} \mathrm{C}_{p} x^{p}$
$\therefore \quad$ the coefficient of $x^{p}={ }^{p+q} C_{p}$
Similarly, coefficient of $x^{q}={ }^{p+q} C_{q}$
and

$$
\begin{aligned}
{ }^{p+q} C_{p} & =\frac{(p+q)!}{p!(p+q-p)!}=\frac{(p+q)!}{p!q!} \\
{ }^{p+q} C_{q} & =\frac{(p+q)!}{q!(p+q-q)!}=\frac{(p+q)!}{p!q!}
\end{aligned}
$$

So, the ratio is $1: 1$.
Q32. The position of the term independent of x in the expansion of $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$ is \qquad
Sol. The given expansion is $\left(\sqrt{\frac{x}{3}}+\frac{3}{2 x^{2}}\right)^{10}$

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{10} \mathrm{C}_{r}\left(\sqrt{\frac{x}{3}}\right)^{10-r}\left(\frac{3}{2 x^{2}}\right)^{r}={ }^{10} \mathrm{C}_{r}\left(\frac{x}{3}\right)^{\frac{10-r}{2}}\left(\frac{3}{2}\right)^{r} \cdot \frac{1}{x^{2 r}} \\
& ={ }^{10} \mathrm{C}_{r}\left(\frac{1}{3}\right)^{\frac{10-r}{2}} \cdot x^{\frac{10-r}{2}}\left(\frac{3}{2}\right)^{r} \cdot \frac{1}{x^{2 r}} \\
& ={ }^{10} \mathrm{C}_{r}\left(\frac{1}{3}\right)^{\frac{10-r}{2}} \cdot x^{\frac{10-r}{2}-2 r} \cdot\left(\frac{3}{2}\right)^{r} \\
& ={ }^{10} \mathrm{C}_{r}\left(\frac{1}{3}\right)^{\frac{10-r}{2}} \cdot x^{\frac{10-r-4 r}{2}}\left(\frac{3}{2}\right)^{r}
\end{aligned}
$$

For independent of x, we get

$$
\begin{aligned}
\frac{10-r-4 r}{2} & =0 \\
10-5 r & =0 \\
r & =2
\end{aligned}
$$

So, the position of the term independent of x is 3rd term.
Hence, the value of the filler is Third term
Q33. If 25^{15} is divided by 13 , the remainder is \qquad .
Sol. Let

$$
\begin{aligned}
25^{15}= & (26-1)^{15} \\
= & { }^{15} \mathrm{C}_{0}(26)^{15}(-1)^{0}+{ }^{15} \mathrm{C}_{1}(26)^{14}(-1)^{1} \\
& +{ }^{15} \mathrm{C}_{2}(26)^{13}(-1)^{2}+\cdots+{ }^{15} \mathrm{C}_{15}(-1)^{15} \\
= & 26^{15}-15(26)^{14}+\cdots-1-13+13 \\
= & 26^{15}-15 \cdot(26)^{14}+\cdots-13+12 \\
= & 13 \lambda+12
\end{aligned}
$$

$\therefore \quad$ The remainder $=12$
Hence, the value of the filler is 12 .

TRUE OR FALSE

Q34. The sum of the series $\sum_{r=0}^{10}{ }^{20} \mathrm{C}_{r}$ is $2^{19}+\frac{{ }^{20} \mathrm{C}_{10}}{2}$
Sol. $\quad \sum_{r=0}^{10}{ }^{20} \mathrm{C}_{r}={ }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{1}+{ }^{20} \mathrm{C}_{2}+{ }^{20} \mathrm{C}_{3}+\cdots+{ }^{20} \mathrm{C}_{10}$

$$
\begin{aligned}
= & { }^{20} \mathrm{C}_{0}+{ }^{20} \mathrm{C}_{1}+\cdots+{ }^{20} \mathrm{C}_{10}+{ }^{20} \mathrm{C}_{11}+\cdots+{ }^{20} \mathrm{C}_{20} \\
& -\left({ }^{20} \mathrm{C}_{11}+\cdots+{ }^{20} \mathrm{C}_{20}\right) \\
= & 2^{20}-\left({ }^{20} \mathrm{C}_{11}+\cdots+{ }^{20} \mathrm{C}_{20}\right)
\end{aligned}
$$

Hence, the given statement is False.
Q35. The expression $7^{9}+9^{7}$ is divisible by 64 .
Sol. $\quad 7^{9}+9^{7}=(1+8)^{7}-(1-8)^{9}$

$$
\begin{aligned}
= & {\left[{ }^{7} \mathrm{C}_{0}+{ }^{7} \mathrm{C}_{1} \cdot 8+{ }^{7} \mathrm{C}_{2}(8)^{2}+{ }^{7} \mathrm{C}_{3}(8)^{3}+\cdots+{ }^{7} \mathrm{C}_{7}(8)^{7}\right] } \\
& -\left[{ }^{[} \mathrm{C}_{0}-{ }^{9} \mathrm{C}_{1} 8+{ }^{9} \mathrm{C}_{2}(8)^{2}-{ }^{9} \mathrm{C}_{3}(8)^{3}+\cdots{ }^{9} \mathrm{C}_{9}(8)^{9}\right] \\
= & (7 \times 8+9 \times 8)+\left(21 \times 8^{2}-36 \times 8^{2}\right)+\cdots \\
= & (56+72)+(21-36) 8^{2}+\cdots=128+64(21-36)+\cdots \\
= & 64[2+(21-36)+\cdots]
\end{aligned}
$$

which is divisible by 64
Hence, the given statement is True.
Q36. The number of terms in the expansion of $\left[(2 x+3 y)^{4}\right]^{7}$ is 8 .
Sol. Given expression is $\left[(2 x+3 y)^{4}\right]^{7}=(2 x+3 y)^{28}$
So, the number of terms $=28+1=29$
Hence, the given statement is False.

Q37. The sum of coefficients of the two middle terms in the expansion of $(1+x)^{2 n-1}$ is equal to ${ }^{2 n-1} C_{n}$.
Sol. The given expression is $(1+x)^{2 n-1}$
Number of terms $=2 n-1+1=2 n$ (even)
$\therefore \quad$ Middle terms are $\frac{2 n}{2}$ th term and $\left(\frac{2 n}{2}+1\right)^{\text {th }}$ terms
$=n$th terms and $(n+1)$ th terms
Coefficient of nth term $={ }^{2 n-1} \mathrm{C}_{n-1}$
and the coefficient of $(n+1)$ th term $={ }^{2 n-1} \mathrm{C}_{n}$
Sum of the coefficients $={ }^{2 n-1} \mathrm{C}_{n-1}+{ }^{2 n-1} \mathrm{C}_{n}$

$$
={ }^{2 n-1} \mathrm{C}_{n-1}+{ }^{2 n-1} \mathrm{C}_{n}={ }^{2 n-1+1} \mathrm{C}_{n}={ }^{2 n} \mathrm{C}_{n}
$$

Hence, the statement $\left[\because{ }^{n} \mathrm{C}_{r}+{ }^{n} \mathrm{C}_{r-1}={ }^{n+1} \mathrm{C}_{r}\right]$ is False.
Q38. The last two digits of the numbers 3^{400} are 01 .
Sol. Given that $3^{400}=(9)^{200}=(10-1)^{200}$

$$
\begin{aligned}
\therefore \quad(10-1)^{200}= & { }^{200} \mathrm{C}_{0}(10)^{200}-{ }^{200} \mathrm{C}_{1}(10)^{199} \\
& +\ldots-{ }^{100} \mathrm{C}_{199}(10)^{1}+{ }^{200} \mathrm{C}_{200}(1)^{200} \\
= & 10^{200}-200 \times 10^{199}+\cdots-10 \times 200+1
\end{aligned}
$$

So, it is clear that last two digits are 01 .
Hence, the given statement is True.
Q39. If the expansion of $\left(x-\frac{1}{x^{2}}\right)^{2 n}$ contains a term independent of x, then n is a multiple of 2 .
Sol. The given expression is $\left(x-\frac{1}{x^{2}}\right)^{2 n}$

$$
\begin{aligned}
\mathrm{T}_{r+1} & ={ }^{2 n} \mathrm{C}_{r}(x)^{2 n-r}\left(-\frac{1}{x^{2}}\right)^{r}={ }^{2 n} \mathrm{C}_{r}(x)^{2 n-r}(-1)^{r} \cdot \frac{1}{x^{2 r}} \\
& ={ }^{2 n} \mathrm{C}_{r}(x)^{2 n-r-2 r}(-1)^{r}={ }^{2 n} \mathrm{C}_{r}(x)^{2 n-3 r}(-1)^{r}
\end{aligned}
$$

For the term independent of $x, 2 n-3 r=0$
$\therefore r=\frac{2 n}{3}$ which not an integer and the expression is not possible to be true
Hence, the given statement is False.
Q40. The number of terms in the expansion of $(a+b)^{n}$ where $n \in N$ is one less than the power n.
Sol. Since, the number of terms in the given expression $(a+b)^{n}$ is 1 more than n i.e., $n+1$
Hence, the given statement is False.

