HALF YEARLY EXAMINATION -2014 XI MATHEMATICS

Time: 3 Hours

(Set II)

M.M.100.

SECTION A

Questions 1 - 6 carry 1 mark each

What point on the X axis is equidistant from (2,3) and (3, -5)

Find the foot of the perpendicular from the point (2, 3,4) on the XY plane.

Write the real and imaginary parts of the multiplicative inverse of z = 3 - 4i.

4. Does the point (3, -4) lie inside, outside or on the circle $x^2 + y^2 = 25$.

5. Find the angle in radian subtended at the centre of a circle of radius 4 feet by an arc of length 1 foot.

A coin is tossed. If head appears, the coin is tossed again otherwise a dice is thrown. Write the Sample space.

SECTION B

Questions 7-19 carry 4 mark each

7. Find the points which trisect the line segment joining the points P(10, -16, 6) and Q(4, 2, -6).

Find the equation of the line passing through the intersection of the lines 3x + y - 9 = 0 and 4x + 3y - 7 = 0 and parallel to the line 4x + 5y + 1 = 0.

9. A perpendicular to the line segment joining the points (2, 3) and (1, 0) divides it in the ratio 3:1 Find its equation.

10. A line is such that its segment between the lines 5x - y + 4 = 0 and 3x + 4y - 4 = 0 is bisected at the point (1, 5). Find its equation.

11. Find the equation of the circle concentric with $x^2+y^2-5x+8y+1=0$ and passing through (2,7).

12. Find the equation of the ellipse with major axis on the Y axis and passing through (4, 3) and (6, 2).

13. Convert the complex number $\frac{2}{1-i}$ into polar form.

14. Find the square root of 10-6i

15. Prove that : $\frac{\sin A}{1 + \cos A} + \frac{1 + \cos A}{\sin A} = 2 \csc A.$

 $P(A \cap B)$ A and B are two events such that $P(A \cup B) = 0.75$, $P(A \cap B) = 0.15$ and P(B') = 0.9Find P(A).

17. In a triangle ABC, prove that
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} = \frac{a^2 + b^2 + c^2}{2abc}$$

$$5x - 1 < 19$$
, $7x + 4 > 18$

19. Solve the trigonometric equation
$$\sin x + \sin 2x + \sin 3x = 0$$
.

SECTION C

Questions 20 - 26 carry 6 mark each

- 20. An equilateral triangle is inscribed in the parabola $x^2 = 24y$ with one vertex at the origin. Find the area of the triangle.
- Find the equations of the medians of the triangle PQR and show that they are concurrent. Where P(1,3), Q(2,-1) and R(4,5).
- 22. In a triangle ABC, prove that:

$$\left\{ \left(\frac{b^{2}-c^{2}}{a^{2}} \right) Sin \ 2A + \left(\frac{c^{2}-a^{2}}{b^{2}} \right) Sin \ 2B + \left(\frac{a^{2}-b^{2}}{c^{2}} \right) Sin \ 2C = 0 \right.$$

Using the principle of Mathematical Induction prove that the following statement is true for all $n \in N$.

$$\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^n} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right)$$

24. Solve the system of inequations graphically

$$3x - 4y \le 24$$
, $-3x + 2y \le 6$, $x + 3y \ge 6$

Calculate the Mean Deviation from the Median of the following data:

Xi	10	15	20	25	30	35
frequency	7	6	8	5	6	8

26. Calculate the standard deviation for the data:

Classes	0 - 10	10-20	20 - 30	30 - 40	40 - 50	50 - 60
frequency	5	6	10	14	10	5