MANAVA BHARATI INDIA INTERNATIONAL SCHOOL

MID-TERM EXAMINATION 2014 CLASS XII - MATHEMATICS

Time: 3 Hours.

M.M.100

General Instructions:

- i) Question No. 1 to 6 carry one mark each.
- ii) Question No. 7 to 19 carry 4 marks each.
- iii) Question No. 20 26 carry 6 marks each.

1. For what value of K, the matrix is a skew symmetric matrix.

2 If
$$\begin{vmatrix} \sin \alpha & \cos \beta \\ \cos \alpha & \sin \beta \end{vmatrix} = \frac{1}{2}$$
, where α , β are acute angles, then write the value of $\alpha+\beta$

- Write the principal value of $\tan^{-1} \left(\tan \frac{3\pi}{4}\right) + \cos^{-1} \left(\cos \frac{7\pi}{6}\right)$
 - Find the derivative of log₁₀x w.r.t. x.

5. Evaluate
$$\int_0^{1/\sqrt{2}} \frac{dx}{\sqrt{1-x^2}}$$

- 6. Evaluate $\int \frac{x^2}{1+x^3} dx$
- 7. Using properties of determinants show that

$$\begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ x & x^2 & 1 \end{vmatrix} = (1^3 - x^3)^2$$

8. Differentiate with respect to x

$$(\log x)^x + x^{\log x}$$

OR

If $x = a \sin t$ and

$$y = a (\cos t + \log \tan \frac{t}{2})$$
 Find $\frac{d^2y}{dx^2}$

9. Evaluate $\int \frac{5x}{(x+1)(x^2+9)} dx$

OR

Evaluate
$$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$$

10. Find the interval in which the function f given by $f(x) = \sin x - \cos x$ $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.

11. If
$$x^p y^q = (x + y)^{p+q}$$
, prove that $\frac{dy}{dx} = \frac{y}{x}$

Show that the function f(x) = |x - 3|, $x \in \mathbb{R}$ is continuous but not differentiable at

13. Evaluate
$$\int \frac{\sin x + \cos x}{\sqrt{\sin x \cos x}}$$

Evaluate
$$\int \frac{OR}{x^2 + 4} dx$$

Find all points of discontinuity of f, where 14/

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0\\ x+1, & \text{if } x \ge 0 \end{cases}$$

15. Prove that

$$tan^{-1} \left(\frac{1}{3}\right) + tan^{-1} \left(\frac{1}{5}\right) + tan^{-1} \left(\frac{1}{7}\right) + tan^{-1} \left(\frac{1}{8}\right) = \frac{\pi}{4}$$

Prove that
$$tan^{-1} \left\{ \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right\} = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x; -\frac{1}{\sqrt{2}} \le x \le 1$$

16. Using properties of determinants, prove that

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

Solve for x
$$tan^{-1} \left(\frac{x-1}{x-2} \right) + tan^{-1} \left(\frac{x+1}{x+2} \right) = \frac{\pi}{4}$$

13. Evaluate $\int_1^3 (x^2 + 1) dx$ as limit of sums.

If
$$F(x) = \begin{vmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{vmatrix}$$
 show that $F(x) F(y) = F(x+y)$

Verify that $A^3 - 6A^2 + 9A - 4I = 0$ and hence find A^{-1} .

OR

Obtain the inverse of the matrix using elementary row transformations.

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{pmatrix}$$

Using matrix, solve the following system of equations

$$x + y + z = 6$$
; $x + 2z = 7$; $3x + y + z = 12$

22. Find the area of the region enclosed between the two circles $x^2 + y^2 = 1$ and $(x-1)^2 + y^2 = 1$

OR

Find the area of the region in the first quadrant enclosed by x – axis, the line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$.

- 23. Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is $\frac{2R}{\sqrt{3}}$. Also find the maximum volume.
- 24. Evaluate $\int_0^{\pi/2} \log \sin x \ dx$
- 25. For the curve $y = 4x^3 2x^5$, find all the points at which the tangent passes through the origin.

Z6. a) Evaluate $\int x^2 \tan^{-1} x \, dx$

Using differential, find the approximate value of f (2.01) where $f(x) = 4x^3 + 5x^2 + 2$