

MANAVA BHARATI

INDIA INTERNATIONAL SCHOOL

MID-TERM ASSESSMENT (2015-16) **CLASS XII- MATHEMATICS**

Time: 3 Hours

M.M. 100

General Instructions:

- Question No. 1 to 6 carry 1 mark each.
- ii) Question No. 7 to 19 carry 4 marks each.
- Question No. 20 and 26 carry 6 marks each. iii)

If A is a square matrix of order 3 and |3A| = K |A| then write the value of k. 3^3 2022 - 2542 - 25

2. If
$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$
 Find the value of |adj A|

- Give examples of two non-zero matrices whose product is zero.
 - Find the principal value of $\sin^{-1} \sin \frac{4\pi}{3}$
- Write the principal value of $\sqrt{3}$ $\cot^{-1} \sqrt{3}$
- Find $\frac{dy}{dx}$ if $\sin^2 x + \cos^2 y = 1$

Prove that

$$a+b+2c$$
 a b $= 2 (a+b+c)^3$ c a $c+a+2b$

Solve

$$\tan^{-1} \frac{x-1}{x-2} + \tan^{-1} \frac{x+1}{x+2} = \frac{\pi}{4}$$

Prove that
$$\tan^{-1} \left\{ \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right\} = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$$
.
$$-\frac{1}{\sqrt{2}} \le x \le 1$$

$$\begin{vmatrix} a^2+1 & ab & ac \\ ab & b^2+1 & bc \\ ca & cb & c^2+1 \end{vmatrix} = 1 + a^2 + b^2 + c^2$$

10. For what value of K, the following function is continuous at
$$x = 0$$

$$f(x) = \begin{cases} \frac{1 - Cos4x}{8x^2}, & x \neq 0 \\ K, & x = 0 \end{cases}$$

For what value of K

$$f(x) = \begin{cases} \frac{\sqrt{1+kx} - \sqrt{1-kx}}{x}, & \text{if } -1 \le x \le 0 \\ \frac{2x+1}{x-1}, & \text{if } 0 \le x \le 1 \end{cases}$$

Is continuous at x = 0

M. Differentiate w.r.t. x

$$(\log x)^x + x^{\log x} + x^{\cos x} + x^x$$

$$e^{x} + e^{y} = e^{x+y}$$
 then prove that $\frac{dy}{dx} + e^{y-x} = 0$

OR

X = a sint, y = a (cost+ log tan $\frac{t}{2}$) then find $\frac{d^2y}{dx^2}$

Prove that the curves $x = y^2$ and xy = k cut at right angle if $8k^2 = 1$

14. Evaluate
$$\int \frac{x^2+1}{(x+1)^2} e^x dx$$

$$\int \frac{1-x^2}{x(1-2x)} \ dx$$

OR

Evaluate
$$\int \frac{x^2}{(x^2+4)(x^2+9)} \ dx$$

16. Evaluate
$$\int \sin^{-1}\sqrt{x} dx$$

Evaluate
$$\int \frac{x^2}{(x^2+4)(x^2+9)} dx$$

- 18. Evaluate $\int_1^3 (x^2 + 1) dx$ as limit of sums
- Verify mean value theorem if $f(x) = x^2 4x 3$ is the interval [a, b], where a = 1, b = 4.
- 26. Using matrices solve the following system of linear equations

$$X - y + 2z = 7$$
, $3x + 4y - 5z = -5$, $2x - y + 3z = 12$

Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is $\frac{1}{3}h$.

OR

Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.

- Find the area of the region in the quadrant enclosed by x-axis, the line $x = \sqrt{3}$ y and the circle $x^2 + y^2 = 4$.
- 23. Evaluate:

$$\int_0^{\pi/2} \frac{x Sinx cos x}{sin^4 x + Cos^4 x} dx$$

OF

Evaluate:

$$\int_0^{\pi/2} \log(\sin x) dx$$

- Find the interval in which the function f given by $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is strictly increasing or strictly decreasing.
- For well being of an orphanage, three trust A,B and C has 10%, 15% and 20% of their total fund Rs.2,00,000, Rs.3,00,000 and Rs.5,00,000 respectively. Using matrix multiplication, find the total amount of money received by orphanage by three trust. By such donation which value are generated?
 - b) Prove that $\tan^{-\frac{x}{4}} \left(\frac{\cos x}{1 + \sin x} \right) = \frac{\pi}{4} \frac{x}{2}$.

$$X \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

10 200000 + 300000 (8

26. a) Using differentiation find the approximate value of $\sqrt{49.5}$

Evaluate
$$\int (\sqrt{tanx} + \sqrt{cotx}) dx$$

pg(m)

25 - 10 -3/von =