Class XII Chapter 5 - Continuity and Differentiability Maths

Prove that the function f'(x)=5x—3is continuous at x = 0,at x = —3and at x = 5.

Answer

The given function is f(x)=35x-3
Atx=0, f(0)=5%x0-3=3

lim £ (x) =lim(5x—3) =5x0-3=-3

r—+il

s lim £ (x) = £(0)

Therefore, fis continuous at x = 0

Atx= —3,f{—3}= Sx{—?n}—?r =—18

lim f(x)=lim(5x-3)=5x(-3)-3=-18
~lim f(x)= f(-3)

Therefore, fis continuous at x = -3

Atx =5, f(x)=f(5)=5%x5-3=25-3=22
l_in}f[x}:l_im;[S.r—E}: Sx5-3=22
s lim f(x)= £ (5)

Therefore, fis continuous at x = 5

Examine the continuity of the function f(x)=2x"—latx=3,

Answer

The given function i.v..f'[x} =2x"~1
Atx=3,f(x)=f(3)=2x3"-1=17
lim f(x)=lim(2x" ~1) =2x3" ~1=17
lim £ (x)= £ (3)

Thus, fis continuous at x = 3
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Examine the following functions for continuity.

> 1
(@) f(x)=x-5 (b) filx)= ,JX=S

X —

h

2 =

on Xt =25 i}
(c) .f{l’]‘= 1r+;,_.‘r:f—:1 (d)_f'l[.\‘j=|,1.‘—5
Answer

(a) The given function is _f'{.r] =x—35
It is evident that f is defined at every real number k and its value at k is kK — 5.

It is also observed that, ll_lﬂff't} = ]'l_l}lz(»‘f—ﬁ]' =k-5=1(k)
wlim f(x) = f ()
Hence, fis continuous at every real number and therefore, it is a continuous function.

r ]
(b) The given function is f{x)= 5 x2S

For any real number k # 5, we obtain
. . 1 1

lim f(x)=lim = —

—k =k x—5 k-=35

1 . _
Also,f(k)=—— (Ask=3)
k-3 )
.'.Iirt: fx)=f(k)
Hence, fis continuous at every point in the domain of f and therefore, it is a continuous

function.
(c) The given function is f(x) =" S X#E=5

For any real number ¢ # -5, we obtain
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- +5)(x—3
i 7 (1) =tim 2%t O i (15) < -5)

Also, f (c)= e i}|({l =) =(¢=5) (ase=-5)
wlim £ (x) = f(c)

Hence, fis continuous at every point in the domain of f and therefore, it is a continuous

L

function.
S—x, ifx<5

d) The given function is f(x)=|x—5|=
(d) The g f(x)=|x-5] {_\,_i B

This function f is defined at all points of the real line.

Let c be a point on a real line. Then,c<5o0orc=50rc>5
Casel:c<5

Then, f(c)=5-c¢

lim f(x)= l1r'n (5-x)=5-¢

]11]1 f{l} =f(c)

Therefore, fis continuous at all real numbers less than 5.

Casell:c=5

Then, f(c)=/(5)=(5-5)=0
lim f(x) =lim(5-x)=(5-5)=0
lim f(x) = lim(x~5)=0

sdim f(x)=lim f(x)= f(c)

T X

Therefore, fis continuous at x = 5
CaselIll: c>5

Then, f (c)=f(5)=c-5
lim f(x)=lim(x-5)=¢c-5
sim f(x)=1(e)

K—¥
Therefore, fis continuous at all real numbers greater than 5.

Hence, fis continuous at every real number and therefore, it is a continuous function.
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Prove that the function f(x)=x"is continuous at x = n, where n is a positive integer.
Answer

The given function is f (x) = x”

It is evident that f is defined at all positive integers, n, and its value at n is n".

Then, lim f (i) = lim(x" ) = n"

Ilglj{r] = f(n)

Therefore, fis continuous at n, where n is a positive integer.

Is the function f defined by
f'{ . x ifxr =1

Xl=
' } 5, ifx =1
continuous at x = 0? At x = 1? At x = 2?

Answer

x, 1ifxr =1

- . - ' -1-. —
The given function fis .f{ ) 5 ifx>]

At x =0,
It is evident that f is defined at 0 and its value at 0 is 0.

Then, lim /' (x)= limx=0
a—wlh o

x—l}

~lim £ (x)= £(0)

asb)
Therefore, fis continuous at x = 0
Atx =1,

fis defined at 1 and its value at 1 is 1.
The left hand limit of fat x = 1 is,

lim f(x)=limx=1

x—=+l

The right hand limit of fat x = 1 is,
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lim f(x)=1lim(5)=5

K=l k]

sim f(x)# lim f(x)

=+l x—l
Therefore, f is not continuous at x = 1
At x = 2,

f is defined at 2 and its value at 2 is 5.

Then, lim f(x)=1lim(5)=35

sim f(x)=1(2)

1

Therefore, f is continuous at x = 2

Find all points of discontinuity of f, where f is defined by
. 2x43, ifxs2
f(x)= .
2x=-3, ifx=2
Answer

f'{ )= 2x43, ifxr=2
A P

It is evident that the given function f is defined at all the points of the real line.

Let ¢ be a point on the real line. Then, three cases arise.
(Hec<?2

(ii)c>2

(iiyc=2

Case (i)c< 2

Then, f(¢)=2c+3

1\1{3‘1,{(1} = ]L-i[TJ- {2,1' ! 3}: 2c+3

~im £ (x) = f(e)

Therefore, fis continuous at all points x, such that x < 2

Case (ii)c > 2
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Then, f(c)=2¢-3
lim £ (x) =lim (2x—3) = 2¢ -3

N—h

sim f(x)=1(c)

K

Therefore, fis continuous at all points x, such that x > 2
Case (iii)c =2

Then, the left hand limit of fat x = 2 is,

!qu fx)= lli_!lj (2x+3)=2x2+43=7

The right hand limit of fat x = 2 is,

lim flx)= lim (2x-3)=2x2-3=1

It is observed that the left and right hand limit of f at x = 2 do not coincide.

Therefore, f is not continuous at x = 2

Hence, x = 2 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by
[|x|+3,ifx <=3
_f'l[x] = =2x,if =3 <x <3
bx+20fx =3
Answer
x+3=-x+3, ifx<-3
_f'l[x}z 2x, if-3<x<3
bx+2, ifxz=3
The given function fis defined at all the points of the real line.

Let ¢ be a point on the real line.
Case I:

If ¢ <=3, thenf(c)=—c+3
lim flx)= lim(—x+3)=-c+3

].-iT fx)=f(c)

Page 6 of 144



Class XII Chapter 5 - Continuity and Differentiability

Maths

Therefore, fis continuous at all points x, such that x < =3
Case II:

If ¢ ==3, then f(-3)=—(-3)+3=6

lim f(x)= lim (—x +3)=—(-3)+3=6
._Ili’n.]_ f(x)= .Ili’rr.]_ (-2x)=-2x(-3)=6
lli.!n;_f'[x}—.j'.[—fs]

Therefore, f is continuous at x = -3

Case III:

If —3<c¢<3, thenf(¢)=-2c and lim f(x)=lim(-2x)=-2¢

L—r el

sim f(x)=1(c)

Therefore, fis continuous in (=3, 3).
Case IV:
If c = 3, then the left hand limit of fat x = 3 is,

lim f(x)=lim(-2x)=-2x3=-6
The right hand limit of fat x = 3 is,
lim f(x)= lim (6x+2)=6x3+2=20

=¥

It is observed that the left and right hand limit of f at x = 3 do not coincide.

Therefore, fis not continuous at x = 3
Case V:

If ¢ >3, then f(c)=6c+2 and |i1:r_1_f(x]= Iilaj.{ﬁx +2)=6c+2
]le f(x)=f(c)

Therefore, fis continuous at all points x, such that x > 3

Hence, x = 3 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by
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: u ifx=0
/ {-‘f}= x
0, 1fx=0
Answer
: u ifx=0
! {-1'}= x
0,1fx=0
It is known that, x <0 =|x|=—xand x > 0= [x| = x

Therefore, the given function can be rewritten as

M= ite<o
X X

fx)=10, ifx=0
H——=l, ifx =0
X X

The given function f is defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:
If e <0, then f(c)=-1
l_im_,i"[x} = ]im{—l}: -1

K= :

sim f(x)= 1 (e)

Therefore, fis continuous at all points x < 0
Case II:
If ¢ = 0, then the left hand limit of fat x = 0 is,

lim f(x)= lim (-1)=-1

K=l

The right hand limit of fat x = 0 is,
lim f(x)=lim(1)=1
J.r'il'.f{ } x rLI'( }

It is observed that the left and right hand limit of f at x = 0 do not coincide.

Therefore, f is not continuous at x = 0
Case III:
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If ¢ >0, then f(c)=1
lim f(x)=lim(1)=1

sim f(x)=1(c)

K

Therefore, fis continuous at all points x, such that x > 0

Hence, x = 0 is the only point of discontinuity of f.

Find all points of discontinuity of f, where f is defined by

) Ji,if.rcﬂ
S (x)=1

l—L ifx=0
Answer

J'—" ifx<0

flx)= lM
~1, ifx=0

It is known that, x < {} = |1.| =—x

Therefore, the given function can be rewritten as

X

_ o o Lifx<0
f(x)=9l —x
1, ifx=10
= f(x)=-1forallxeR

Let ¢ be any real number. Then, Iin_‘!,f{.r}: lim(-1)=-1

K>

Also, f(c)=—1=lim f(x)
Therefore, the given function is a continuous function.

Hence, the given function has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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o (x+1, ifx=1
T2 e 4, i<

Answer

£(x)- [x+1, ifxz]

| <41, ifx <1

The given function fis defined at all the points of the real line.
Let ¢ be a point on the real line.

Case I:

If ¢ <1, then f(c) =c® +Tand lim f(x) = lim(x* +1)=c* +1
~lim £ (x) = f(c)

Therefore, fis continuous at all points x, such that x < 1
Case II:

Ife=1, thenf(c)=f(1)=1+1=2

The left hand limit of fat x = 1 is,

lim f(x)= !_Lnll{x: +)=1"+1=2

The right hand limit of fat x = 1 is,

lim fx)= |]IEI{¥+ I)=1+1=2

~lim f(x) = 7 (1)

Therefore, fis continuous at x = 1

Case III:

Ifc>1, thenf(c)=c+]

lim f(x)=lim(x+1)=c+1

sim f(x)=1(c)

K=

Therefore, fis continuous at all points x, such that x > 1
Hence, the given function f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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y -3, ifx<2
O
| +1, ifx>2
Answer
y -3, ifx<2
O
|2 +1, ifx>2
The given function fis defined at all the points of the real line.
Let c be a point on the real line.

Case I:

If e <2, thenf(c)=c’—3 and lim f(x)=lim (x‘* —3)=c'-3

e X

sim f(x)= 1 (e)

Therefore, fis continuous at all points x, such that x < 2
Case II:

Ife=2, thenf(c)= ,f'{z} =2"-3=5

M
lad
I
L

]1111 f = ||m{1r1 }
lim —I1m{1 +1)=2"+1=5

Ilm,r‘f v)=1(2)

Therefore, fis continuous at x = 2
Case III:

Ife=2, th'r:nl,r"{f.'] =c” +1
lim f(x) = lim(x*+1) = ¢ +1
sdim f(x)= fle)

Therefore, fis continuous at all points x, such that x > 2

Thus, the given function fis continuous at every point on the real line.

Hence, f has no point of discontinuity.

Find all points of discontinuity of f, where f is defined by
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oy XL ifxs
/(%) |2, ifx>1
Answer

10 o
» x =1L ifx=<l1
O
|22, ifx>1
The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I:
If e <1, thenf(c)=¢"~1and lim f(x) = ]im_(x"' —l)zc "]
- lim f(x)=1(c)
Therefore, fis continuous at all points x, such that x < 1
Case II:
If c = 1, then the left hand limit of fat x = 1 is,

lim f(x)=lim(x" =1)=1"=1=1-1=0

i+l Xl *

The right hand limit of fat x = 1 is,

lim f(x)= Iim(.r?} =1 =1

x—+l r—1" !

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, fis not continuous at x = 1
Case III:

Ifc =1, thenf(c)=c

lim f(x) = ]_jm_{.r:} = ¢’

i f(x)= f(e)
Therefore, fis continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of

discontinuity of f.

Is the function defined by
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) x+5 ifx=1
fx)= :
x=5 ifx=1
a continuous function?
Answer
x+5, ifx=1

. . f f x|= i
The given function is f( ¥) =5 ifx>1

The given function f is defined at all the points of the real line.
Let c be a point on the real line.

Case I:

Ife <1, thenf(c)=c+5and lim f(x)=lim(x+5)=c+5

T Tk

sim f(x)= 1 (e)

Therefore, fis continuous at all points x, such that x < 1
Case II:

Ifc=1, thenf(1)=1+5=6

The left hand limit of fat x = 1 is,

lim fx)= lim (x + 5)=1+5=6

The right hand limit of fat x = 1 is,
lim f(x)=lim(x-5)=1-5=—4
Kl v+

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, fis not continuous at x = 1
Case III:

If ¢ >1, thenf (c)=c—5and lim f(x)=lim(x-5)=c-5

sim f(x)=1(c)

K=

Therefore, fis continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x = 1 is the only point of

discontinuity of f.
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Discuss the continuity of the function f, where f is defined by

J:i, if0<x<l
flx)=44,ifl<x<3
lﬁ. if3<x<10
Answer
Js. if0<x<l
The given function is _f'l[x] =<4, iflex<3
lfﬁ. if3<x<10

The given function is defined at all points of the interval [0, 10].

Let ¢ be a point in the interval [0, 10].

Case I:

If0=c<l, thenf(c)=3and lim f (x)= lim (3)=3
sim f(x)=f(¢)

Therefore, fis continuous in the interval [0, 1).
Case II:

Ife=1, thenf(3)=3

The left hand limit of fat x = 1 is,
lim fx)= 3iﬂ1{3_}:3

The right hand limit of fat x = 1 is,
m /(x) = lim (4)= 4

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, fis not continuous at x = 1
Case III:

If 1< ¢ <3, thenf(c)=4and ITil:J} f(x)= ln:n (4)=4

IPP f(x)=r(c)

Therefore, fis continuous at all points of the interval (1, 3).
Case IV:

If ¢ =3, thenf(c)=35
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Class XII
The left hand limit of fat x = 3 is,

|HT1 flx)= |11T] (4)=4

The right hand limit of fat x = 3 is,

!ﬂ?;{x}:!ﬂp[sjzs

It is observed that the left and right hand limits of f at x = 3 do not coincide.

Therefore, f is not continuous at x = 3

Case V:
If 3<¢ <10, thenf (¢)=5and lim f(x)=lim(5)=35

K=

lim f'(x) = f(c)
Therefore, fis continuous at all points of the interval (3, 10].

Hence, fis not continuous at x =1 and x = 3

Discuss the continuity of the function f, where f is defined by

Jlniﬁrcﬂ
fx)=40, if0=<x<l
l+nifx>1
Answer
2x, ifx <0
The given function is f(x)}=10, if0<x<]
l+nifx>1

The given function is defined at all points of the real line.
Let c be a point on the real line.
Case I:

If ¢ <0, then f(c)=2¢c

]L_ir.n_ flx)= ]‘_ilr{g.r:] =2c

|1m flx)=f(e)

Therefore, fis continuous at all points x, such that x < 0
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Case II:

If e =0, thenf(c)=/(0)=0

The left hand limit of fat x = 0 is,
lim f(x)=1im(2x)=2x0=0

a—l)

The right hand limit of fat x = 0 is,

lim flx)= lim (0)=0

Ili_r:J f{x)=r(0)

Therefore, fis continuous at x = 0

Case III:

If0<e<l, then_,f'[x} = and ]l_i];l'l _f[x]l = ITiJP{:D} =1
IPP f(x)=r(c)

Therefore, fis continuous at all points of the interval (0, 1).
Case IV:

Ife=1, then f(c)=f(1)=0

The left hand limit of fat x = 1 is,

im 7 (x)= lim(0) =0

The right hand limit of fat x = 1 is,

]l_Elll flx)= 11_21 (4x)=4x1=4

It is observed that the left and right hand limits of f at x = 1 do not coincide.

Therefore, f is not continuous at x = 1
Case V:

Ife <1, thenf[c'] = d4¢ and Iim r {r) = ll_in;[iix} =4c
2 lim f{x} :_f(c)

Therefore, fis continuous at all points x, such that x > 1

Hence, fis not continuous only at x = 1

Discuss the continuity of the function f, where f is defined by
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(-2, ifx<-1
flx)=12x if —-1<x<]
|2, ifx=1
Answer
(-2, ifx<—1
Slx)=12x, if —1<x =1
|2, ifx=>1

The given function is defined at all points of the real line.
Let c be a point on the real line.

Case I:
If ¢ <~1, then f(c¢)=-2 and lim flx)= ]_im[ 2)=-2
~im f(x) = f(e)
Therefore, fis continuous at all points x, such that x < —1
Case II:
Ife=—1, thenf(c)= f(-1)=-2
The left hand limit of fat x = =1 is,
lim f(x)= lim (-2)=-2
x=—| : x=—|
The right hand limit of fat x = =1 is,

Eq? flx)= |_I.T (2x)=2x(-1)=-2

- lim flx)=r1(-1)

Therefore, fis continuous at x = —1

Case III:

If —1<c<], thenf(c)=2c

lim flx)= lim(2x)=2c

cim flx)=fle)

Therefore, fis continuous at all points of the interval (-1, 1).
Case IV:
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Ife=1, thenf(c)= f(1)=2x1=2
The left hand limit of fat x = 1 is,
lim f(x)=lim(2x)=2x1=2

sl N sl

The right hand limit of fat x = 1 is,
lim f(x)=1lim2=2

« lim f(x)=f(e)

Therefore, f is continuous at x = 2
Case V:

If ¢ >1, thenf(c)=2 and lim f(x)=1lim(2)=2

lim f(x) = f(¢)

Therefore, fis continuous at all points x, such that x > 1
Thus, from the above observations, it can be concluded that f is continuous at all points

of the real line.

Find the relationship between a and b so that the function f defined by
ax+1, ifx=3
e 43, ifx>3

fx)

is continuous at x = 3.

Answer
_ av+1, 1fx=3
flx)=

be+3, ifx=3

If fis continuous at x = 3, then
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lim 7(x)= lim 7 (x)= £(3) (1)
lim f(x) = lim (ax+1)=3a+1

fim f(x) = lim (bx+3)=3b+3
f13)=3a+1
Therefore, from (1), we obtain
Ja+1=3b+3=3a+1

= 3g+1=3h4+3
= 3a=3h4+2

2
—=a=h+=
3

2
Therefore, the required relationship is given by, a =h+E

For what value of 4 is the function defined by

flx)= [A("—_—Ex}‘_ iFr=0

4x+1, ifx=0

continuous at x = 0? What about continuity at x = 1?

Answer

_ o A(x"-2x), ifx<0

The given function is f(x)= :
| dx+1, ifx=0
If fis continuous at x = 0, then
lim f{x] = lim _f'[x}:f{[}}
x—al] x—wli”
1 - — =1 C = 0 -—

= !11.31 /1,{] u_r] 11:1 {41 +1) ),{ﬂ Exﬂ)
= A(0° —3><ﬂ)=4><ﬂ+l =)
=» (0 =1=10, which is not possible

Therefore, there is no value of A for which fis continuous at x = 0
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Atx =1,
f(1)=4x+1=4x1+1=5
lim(4x+1)=4x1+1=5

Tl

~lim £ (x)= £(1)

el

Therefore, for any values of A, fis continuous at x = 1

Show that the function defined by g{.r] = x—[,r] is discontinuous at all integral point.

Here [\] denotes the greatest integer less than or equal to x.
Answer

The given function is g{.r] =X —[J.‘]

It is evident that g is defined at all integral points.
Let n be an integer.
Then,

g(n)=n-[n]=n-n=0

The left hand limit of fat x = nis,

]|m g(x) llm (x—[x]) llm (x)- llm [x]=n—(n-1)=1
The right hand limit of fat x = n is,

lHn g(x)= |I_!T'| (x—[x])= Iﬂ'n (x)-lim[x]=n-n=0

It is observed that the left and right hand limits of f at x = n do not coincide.
Therefore, fis not continuous at x = n

Hence, g is discontinuous at all integral points.

Is the function defined by If'(,t'}: ¥> —sin x4+ 5 continuous at x = p?

Answer

The given function is /' (x) = x* —sinx+5
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It is evident that fis defined at x = p
Atx=m, f(x)= f(n)=n"—sint+5=n"-0+5=71"+5

Consider lim f(x) = lim (x* —sin x +5)

X—*R I+
Putx=mn+h
If x — 1, then it is evident that h—0

s dim £ (x) = Tim (x* ~sin x +5)

N—+X N—T

= lim _[rr+ h}l —sin(n+h)+ 5}

=0

=lim(n+ h]: ~limsin (m+h)+1im3s

fr— b — 0}

=(x+0)

Iim[s-in mcosh+ ms*n:s-inh] 5

M=)

n” —limsin wcosh— lim cos wsinh+ 5

h—0 -0

=n" —sinmcos—cosmsin0+5
=r' —0x] —{—|}><ﬂ+5

=1 +5

- lim fx)=f(n)

Therefore, the given function fis continuous at x = n

Discuss the continuity of the following functions.
(@) f(x) = sin x + cos x

(b) f (x) = sin x — cos x

(c) f (x) = sin x x cos X

Answer

It is known that if g and h are two continuous functions, then

g+h, g—h, and g.h are also continuous.

It has to proved first that g (x) = sin x and h (x) = cos x are continuous functions.

Let g (x) = sin x

It is evident that g (x) = sin x is defined for every real number.
Let c be a real number. Putx =c + h

Ifx > c, thenh—0
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g(e)=sinc

limg(x)=limsinx

N L 1o

= I:rn}.]: sin (¢ + h}

= Iim[sin ccosh +coscsin h]
(=]

= I;rh}.].{sin ccosh)+ lbirﬂ{cnsc sin )

=sinccosD+coscsin(
=sinc+10
=sine
+ limg(x)=g(c)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Putx =c + h
Ifx—>c thenh—0
h (c) =cosc

lim h(x)=limcosx

K=k

= limcos(c +h)

fe—=ll

= lim [cusf:- cos h—sin¢sin Ir]

Te=sll

= limcosecos h—limsinesin

fr—ll fr—il

=cosccosl=sinesin0
=coscxl—sincx0
=Ccosc

< lim h(x)=h(ec)

Therefore, h is a continuous function.

Therefore, it can be concluded that

(@) f(x) =g (x) + h (x) =sin x + cos x is a continuous function
(b) f(x) =g (x) — h (x) =sin x — cos x is a continuous function

(o) f(x) =g (x) x h (x) =sin x x cos x is a continuous function
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Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Answer

It is known that if g and h are two continuous functions, then
hfx]
g(x)’

(i)

g(x)# 0 is continuous

(i)

, £(x)#0 is continuous

|
g(x)

(iii) ; .1 -, h(x)=0 is continuous
1 X )

It has to be proved first that g (x) = sin x and h (x) = cos x are continuous functions.
Let g (x) = sin x
It is evident that g (x) = sin x is defined for every real number.
Let c be a real number. Put x = c + h
Ifx —»>c,thenh —0
g(e)=sinc
1\1mg{1} = ]L_ilp sin x
= Ir_il:r|11 sin(c+h)

= Iim[sin ccosh +coscsin ﬁr]
(=]

= !im{sin coosh )+ 1im (coscsinh)
—ald f—a )

=sinccosD+coscsin(
=sinc+10
=sin¢
" ]\_1111 g(x)=g(e)
Therefore, g is a continuous function.
Let h (x) = cos x
It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Putx =c + h
If x ¢, then h—=0

h (c) =cosc
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]_itr_l_h[_r}— limcos x

K—br

= limcos(c +h)

Je—sll

= lim [ms;; cos h—sincsin h]

Te=sll

= limcosecos h—limsinesin

fr—ll o=l

=cosccosl=sinesin0
=coscxl—sincx0

=C0sC

slim h{.\:] h(e)

Therefore, h (x) = cos x is continuous function.
It can be concluded that,

1 . . .
COBECY =——, SINXF 0 is continuous
snx

= cosecx, X #nn (neZ) is continuous

Therefore, cosecant is continuous except at x = np, n iz

1 . .
5eCX = . cosx # 0 is continuous
Cosx

=S SeCcy. X # {En +1}% [n e Z) is continuous

T
Therefore, secant is continuous except at x=(2n+ I]; (neZ)

WD Y

, sinx # 0 is continuous

colx =

sin x
= colx, x # nn (neZ) is continuous

Therefore, cotangent is continuous except at x = np, n iz

Find the points of discontinuity of f, where

_Jsmx_if_r{{l

x+1, ifx=0
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Answer

DR ELLLREToNY
! |:~-TJ =1 X
l.‘r 1, ifx=0
It is evident that f is defined at all points of the real line.
Let ¢ be a real number.

Case I:

If ¢ <0, thenf(c)= M and lim f(x)=1lim
¢

[’ sin v *| sin ¢
Xom b ,‘- rr )I - {"

Slim flx)y= fle

im £(x)= /()
Therefore, fis continuous at all points x, such that x < 0
Case II:

If ¢ >0, then f(¢)=c+1 and lTiT_f'{x} = ljrp_{x #l)=c+1
]le;’(l] = f(c)

Therefore, fis continuous at all points x, such that x > 0
Case III:

Ife=0, thenf(c)=f(0)=0+1=1

The left hand limit of fat x = 0 is,

lim f(x)=1lim > =

¥ =ni} K i} I]"

1

The right hand limit of fat x = 0 is,
lim f(x)=lim(x+1)=1
Sim f(x) = lim f(x)= f(0)

e

=il
Therefore, fis continuous at x = 0
From the above observations, it can be concluded that fis continuous at all points of the
real line.

Thus, f has no point of discontinuity.
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Determine if f defined by
. |

y x sin—, ifxz0
J {-‘f}— X

0 ifx=10

L]

is a continuous function?
Answer
I
y x sin—, ifxz0
J {-‘f}— x
i), ifx=10
It is evident that f is defined at all points of the real line.
Let ¢ be a real number.
Case I:
) .. 1
Ifc=0, then f {a} =¢ sin—

C

o STV b R Y G R
lim f(x)= l|m[x" sin — —[hm X ][|II‘|‘ISII‘|— =" sin—
N+ N l' "_I N Fl \.I o _‘(/l ‘l_'
- lim _;"[x] :f'{c}

Therefore, fis continuous at all points x # 0

Case II:

If ¢ =0, then f(0)=0
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,
lim f{ﬁ.} = lim (4 sin— ! J_ |i]T'|[I?SiI’] l]
K] K=l x x— X

; L
It is known that, -1 =<sin—=1, x =0
1
T
— X =S8N —= X
X
r ]'l|
.J]m% ]<hm[xsm—J lim x-
¥ —ll a—ull x ¥ —sl]
I

= 0<lim| x° sm— |{U

a—sl)

4 1
:}][m[x'ﬁin J=CI
] X

sodim £ x} (0

Kl

, N
Similarly, lim f(x)= lim [x"sin lw = lim[:r" sin | =0

a—lt” v—l" X il x)
cAim f(x)=£(0)=lim f(x)

Therefore, fis continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of

the real line.

Thus, fis a continuous function.

Examine the continuity of f, where f is defined by
_ sinx—cosx,ifx=0
flx)= .
-1 ifx=10
Answer
_ sinx—cosx,ifx=0
flx)= .
-1 ifx=10
It is evident that f is defined at all points of the real line.

Let c be a real number.

Case I:
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If ¢ # 0, then f'(¢) = sin¢ —cose

lim f(x)=lim(sinx—cosx)=sinc—cose
S

sim f(x)=f(e)
K
Therefore, fis continuous at all points x, such that x # 0

Case II:
If ¢ =0, thenf(0)=-1

lim f (x) = lim(sin x —cos.x) =sin0—cos0=0—1= -]

x—i}

lim f(x)= lim (sin x—cosx)=sin0—cos0=0-1=-1

x—il

s lim f(x) ]I_[Elljl['l‘] £(0)

=¥l
Therefore, fis continuous at x = 0
From the above observations, it can be concluded that f is continuous at every point of
the real line.

Thus, fis a continuous function.

Find the values of k so that the function fis continuous at the indicated point.

kcosx . T
.”.f:.f?
. 3 mT—2x o T
flx)= R—2x atxy=—
: o n 4 2
3, ifx=—
2
Answer
[kcosx .. L
Jfr=—
flo)=1FF 2
J X B -
3, Wer=—
2

The given function fis continuous at x =g, if fis defined at x =gand if the value of the f

T T
at x= E equals the limit of fat x = E
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T ()
It is evident that f is defined at x :E and [ 5 |= 3
W S
lim f{x}—limkcmx
x .::' X )-: ﬂ:—z.l.'
PLI.T.‘{'=£"'r‘rJ'
2
m
Thcn._r—>;:>h—>ﬂ
'
kecos| ~+h
. .ﬁ'(: \ ;
lim f {r] = lim =lim <
\2 /
—klim amhzkl _ﬂamhzk_lzﬁr
bt 2 200 f 2 2
b
8
]_”}‘. f(x) 'I[E,
k.
= =23
2
= k=06

Therefore, the required value of k is 6.

Find the values of k so that the function fis continuous at the indicated point.
o ke, ifx <2
flx)= o atx =2
3, ifx=2
Answer
: o k', ifx <2
The given function is f(x)= -
3, ifx=2

The given function fis continuous at x = 2, if fis defined at x = 2 and if the value of f at

x = 2 equals the limit of fat x = 2

It is evident that f is defined at x = 2 and f(2)=k(2) =4k
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lim f(x)= le fx)=1(2)

x— 2

= lim (kxc* )= lim (3) = 4k

= 2 =1

— k=2" =3=4k

= dk=3=4k
=4k =3
3k=i

4

.3
Therefore, the required value of kis 1

Find the values of k so that the function fis continuous at the indicated point.

f(x)

bx+1, ifx=m
= . atx=m
cosx., ifx>m
Answer

_ e+l ifx=m

The given function is f{x)= .
: cosx, ifx=>m

The given function fis continuous at x = p, if fis defined at x = p and if the value of f at

X = p equals the limit of fat x = p

It is evident that f is defined at x = p and f(m) = kn+1
lim f(x)=lim f(x)= f(n)

= lim (kx+1)= limcosx =kn+1

. ¥—x’
= kn+l=cosn=kn+1
= hkn+l==1=kn+]

2

—=k=-—
m

. 2
Therefore, the required value of kis ——.
L4
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Find the values of k so that the function fis continuous at the indicated point.

fx+1, ifx <5

a 3x—5,ifx=5

alx=35

f(x)

Answer
foe+1, 1fx =5
flx)=
’ { ] |3x =5, ifx>35
The given function fis continuous at x = 5, if fis defined at x = 5 and if the value of f at

x = 5 equals the limitof fat x =5

It is evident that f is defined at x = 5 and f(5)= kx+1= 5k +1
lim f(x)=lim f(x)=1(5)
= lim (kx+1) = lim (3x—5) = 5k +1

x—3 x—8"

=5k +1=15-5=5k+1

= Sk+1=10
= 5k=9

9
:‘J!;::T

5

Therefore, the required value of & is %

Find the values of a and b such that the function defined by

5, ifxr=2
If'(x}z ax+h,if2<x<10
21,  ifx=10

is a continuous function.
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Answer
3, ifx<2
flx)=qax+b,if 2<x<10
21,  ifxz=10

It is evident that the given function fis defined at all points of the real line.

If fis a continuous function, then f is continuous at all real numbers.
In particular, fis continuous at x = 2 and x = 10

Since fis continuous at x = 2, we obtain
lim f(x)=lim flx)=r(2)

= lim (5)= lim (ax+b)=5

=5 =-2-:1r +h= ;

= 2a+b=35 (1)

Since fis continuous at x = 10, we obtain

lim f(x)= xlim_ F(x)=r(10)

x—=l0

= lim (ax+b)= lim (21)=21
Al F—107

= 10a+h=21=21

= 10a+b =21 (2)

On subtracting equation (1) from equation (2), we obtain
8a =16

By putting a = 2 in equation (1), we obtain
2x2+b=5

>4+b=5
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=>b=1

Therefore, the values of a and b for which fis a continuous function are 2 and 1

respectively.

Show that the function defined by f (x) = cos (x?) is a continuous function.

Answer

The given function is f (x) = cos (x?)

This function fis defined for every real humber and f can be written as the composition
of two functions as,

f=goh, where g (x) = cos x and h (x) = x*

e (goh)(x)= g[!}{x}) =g (x'J ] = QL}E{.‘{'E } = f{r}]

It has to be first proved that g (x) = cos x and h (x) = x* are continuous functions.
It is evident that g is defined for every real number.

Let c be a real number.

Then, g (c) = cos ¢

Putx=c+h

Ifx— ¢, then h— 0

]\.'lr'l’(]. glx)= |Till'l Cos X

=lim l.'_'f}ﬁ.l{{' + )

fi—l)

= |im [cnsc cosft—sinesin J'?]

Jr—eli
= limcoseccoshi—limsincsin b
fr—ll il
=cosccosl—smesin
=coscxl—sinex0
=C0s5¢
s ]\_11:(\1 g(x)=g(e)

Therefore, g (x) = cos x is continuous function.
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h (x) = x*

Clearly, h is defined for every real number.
Let k be a real number, then h (k) = k*
limh(x)=limx* =k’

Tl L=k

]1?3 Ir{x}: h[.‘.‘}

Therefore, h is a continuous function.
It is known that for real valued functions g and h,such that (g o h) is defined at ¢, if g is

continuous at ¢ and if fis continuous at g (c), then (f o g) is continuous at c.

Therefore, f(x)=(goh)(x)=cos(x")is a continuous function.

Show that the function defined by _I'{.r}=|cos ,'L'| is a continuous function.

Answer

The given function is f (x) =|cos x|
This function f is defined for every real number and f can be written as the composition

of two functions as,
f=goh, where g(x)=|x| and h(x)=cosx
[ (goh)(x)= g{h{.‘c}] = g(cosx)= |L‘nﬁx| = f{r]]

It has to be first proved that g(x)=|x and h(x)= cosx are continuous functions.

g(x)= |‘L| can be written as
—x, ifx<0
g(x) ={

¥, ifx=0
Clearly, g is defined for all real numbers.

1

Let ¢ be a real number.

Case I:

Ifc<0, theng(c)=—cand limg(x)= lim (—x)=-c

Xk

limg (x)=2(c)
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Therefore, g is continuous at all points x, such that x < 0
Case II:

If ¢ =0, then g(c)=c and Iti1l1g(_r} = lTII'.I'] xX=c
~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

If e =0, theng(c)=g(0)=0

lim g(x) = lim (-x)=0

i ()= Iy (x)=0

- lim g(x) = lim (x) = £(0)

Therefore, g is continuous at x = 0

From the above three observations, it can be concluded that g is continuous at all points.

h (x) = cos x

It is evident that h (x) = cos x is defined for every real number.
Let c be a real number. Putx =c + h

Ifx—>c thenh—0

h (c) =cosc

lim h(x)=limcosx

K=k

= limcos(c +h)

fe—=ll

= lim [cusf:- cos h—sin¢sin Ir]

Te=sll

= limcosecos h—limsinesin

fr—ll fr—il

=cosccos—sincsin(
=coscxl—sincx0

=C0scC

< lim h(x)=h(ec)

Therefore, h (x) = cos x is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined at ¢, if g is

continuous at ¢ and if fis continuous at g (c¢), then (f o g) is continuous at c.

Page 35 of 144



Class XII Chapter 5 - Continuity and Differentiability Maths

Therefore, f(x)=(goh)(x)= g{h[.t}} = g(cosx) =|cos x| is a continuous function.

Examine that sin x‘ is a continuous function.

Answer
Let f/(x)=sin|x|

This function f is defined for every real number and f can be written as the composition

of two functions as,
f=goh, where g(x)=|x and h(x)=sinx
I: {gf}h}{x] = g[h(_r]) = g[sin x)= |'.-;in Xl = f[.l}]

It has to be proved first that g(x)=|x| and /i(x) = sinx are continuous functions.

g(x)=|x| can be written as

g{r}={

Clearly, g is defined for all real numbers.

—x, ifx <0

x, ifx=0

Let c be a real number.

Case I:

Ifc <0, then g(c)=-c and limg(x)= lim (~x)=-c

lim g (x)=g(c)

Therefore, g is continuous at all points x, such that x < 0
Case II:

If¢ =0, then g(c)=c and Iimg(r} =limx=¢
~limg(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

If e =0, theng(c)=g(0)=0
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lim g(x)= lim (-x)=0

lim g(x)=lim (x)=0

x—wl

s lim g (x) = lim (x) = g(0)

x—rll x—+ll
Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
h (x) = sin x
It is evident that h (x) = sin x is defined for every real number.
Let c be a real number. Put x = ¢ + k
Ifx—>c thenk— 0
h(c) =sinc
h(e)=sinc

lim Ir(x] =limsinx

N=% s 1

= lim ﬂin{c f k}

k=l

= Iim[ﬁincmsk +COsesin If]
kil

=lim(sinccosk )+ lim_(cnm:ﬁin k]
k—ll h—l}

=sinccos0+coscsin(

=sinc¢+0

=sinc

. limh(x)=g(c)

K=®(
Therefore, h is a continuous function.

It is known that for real valued functions g and h,such that (g o h) is defined at ¢, if g is

continuous at ¢ and if fis continuous at g (c¢), then (f o g) is continuous at c.

Therefore, f(x)=(goh)(x)=g(h(x))=g(sinx)=|sinx| is a continuous function.

Find all the points of discontinuity of f defined by f{x) = |x|—|x+1].
Answer

The given function is ./ (X) = |x|—=|x+1
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The two functions, g and h, are defined as
g(x)=|x| and A(x)=|x+1]

Then, f=g—-h

The continuity of g and h is examined first.

g(x)= |‘L| can be written as
g(x) ={

Clearly, g is defined for all real numbers.

—x, ifx =0
x, ifx=0

Let c be a real number.

Case I

Ife <0, then g(¢)=—c and |TI_IE:I g(x)= lvl_l.n (~x)=-c
~limg (x)=2(c) |

Therefore, g is continuous at all points x, such that x < 0
Case II:

If¢ =0, then g(c)=c and Itiiz}g{x}: lTII"I'] x=c

]vil;t'l_ g(x)=g(c)

Therefore, g is continuous at all points x, such that x > 0
Case III:

Ifc=0, theng(c)=g(0)=0

I1m glx)= |1m

(-x)=0
llmg }—llm{x] 0

K-l

" lim g(x) = lim (x)=g(0)

r—il x—il
Therefore, g is continuous at x = 0
From the above three observations, it can be concluded that g is continuous at all points.
hix)= |.1'+ 1| can be written as
o =(x+1), if x =1
p(x)={
x+1, itx=-1

Clearly, h is defined for every real number.
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Let ¢ be a real number.

Case I:

If ¢ < —1 then h(c)=—(c+1) and limh(x) =lim| —(x+1) | = ~(c+1)

K=

s lim h[x} = h{f]

Therefore, h is continuous at all points x, such that x < —1
Case II:
Ife> =1, then h(c)=c+1and limh(x)=lim(x+1)=c+I

= lim r’r{x] = h{c}

Temr

Therefore, h is continuous at all points x, such that x > —1

Case III:
If e =—1, then h(c)=h(-1)=-1+1=0
lim h(x) lim _—[x+|)] —(=1+1)=0

K=

lim A(x)= lim (x+1)=(-1+1)=0

x—a—1" x——1

- lim (x)= Jlim h(x)=h(-1)

Therefore, h is continuous at x = —1

From the above three observations, it can be concluded that A is continuous at all points
of the real line.

g and h are continuous functions. Therefore, f = g — h is also a continuous function.

Therefore, f has no point of discontinuity.
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Exercise 5.2

Question 1:

Differentiate the functions with respect to x.

sin(x’ +5)

Answer

Letf (x) =sin(x: + S]. u(x)=x"+5, and v(¢)=sint
Then, (vou)(x)=v(u(x)) = v(x* +5) =tan(x* +5) = £(x)
Thus, fis a composite of two functions.
Putr=u(x)=x"+3

Then, we obtain

dv  d . Y R

E:E(smr]=cusr:mb{1 +.‘J)

df d 7 . d r d — —_

Eza(x +5)—E(I ]+E[5]—2x+ﬂ—21

Therefore, by chain rule, af _dv dt_ ms[xl +5)>c 2x = Z.TCUS(IE +5)
df o

Alternate method

d
= cos(x* +5)- %(fﬁ i{s}}
=cos(x’ +5)-[2x +0]
+5)

'l
= 2.rcu:-s[x'

Question 2:

Differentiate the functions with respect to x.

cos(sin x)
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Answer

Let_f'[x] = {:UH{Hin r) n [\] =sinx, and 1'[:] = oS/
Then, (vou)(x)=v(u(x))=v(sinx) = cos(sinx) = £ (x)
Thus, fis a composite function of two functions.

Putt=u (x) = sin x

':TJ = j [cost]=—sint = —sin(sin x)
i T
dr d
o d—[sm x)=cosx
¥
By chain rule, d—f = ii = —sin [5in x] SC0S X =— 05X sin [5in x]
dvdr odx

Alternate method

4 [cos(sinx)] =-sinsinx)-
Differentiate the functions with respect to x.

sin(ax +b)

Answer

I.et_;"[x):sin I:ux [ b], u(x]: ax +h, and v(e’} =sin{
Then, (vou)(x)=v(u(x))=v(ax+b)=sin(ax+b)= f(x)
Thus, fis a composite function of two functions, u and v.

Putt=u(x)=ax+b

Therefore,
f—fv=i[sinr}:c¢1.~1f:tt}5[ax+b}

di

dr d i d .

— =—(av+b)=—(ax)+—(b)=ag+0=a
dx n’x[ ] rbc( ) ra’x[ )

Hence, by chain rule, we obtain

ﬁ= ﬁﬂ: cos[ax : b}-.:J:aan.{ax ; h]
dvdr dx

(sinx)=—sin [Hil‘l x] -COSX = — COs X sin(sin x}
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Alternate method

i[sin[m:+b}:|=cos[ax+b}.i[ax+b}

X dx

:ms(ax+b]-[%{ar}+i[b}:|

clx
=cos(ax+b).(a+0)

=g cns[ax+b}

Question 4:

Differentiate the functions with respect to x.

sec(tan(v@))
Answer

Letf(x)= s-‘dc(tan x,-';)m(x} = Jx,v(r)=tant,and w(s)=secs

Then, (wovou)(x) = u-[v{n[x}ﬂ = u[t[\;"_)] = w(tan \-'I'_T) = scc(tan wf_t‘) = f(x)

Thus, fis a composite function of three functions, u, v, and w.
Puts=v(r)=tans and r =u(x)=x

Then, - j (secs)=secstans =sec(tant).tan(tanr)  [s=tan¢|
s

=5ec[lan\-'{;]rlan(lan¢;) [r=u'r;}

%:%{tam]:sec%:s&czﬁ

d d dl 2} 1
— ¥ ]= ¥t |=—-xt =

dx aﬂ‘c[J_) a’xL‘ } 2 * 2Jx

Hence, by chain rule, we obtain
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ot :(,fwlda'ld.f

dy ds dr odx

:se-::(lan -..'{;) lan(mn\.'{;)x see” \x % E\I.I";
= 2:@ sec’ \/x scc(tamﬂ)tan(tan ﬁ}

) sec’ J;sec(tan JI) tan (lan J?]

- 2Jx

Alternate method

& [sec(tan )| = sec(tan V). an(1an ) (1an )
— sec(tan v -tan(tan ) -sec? (V&) ( t)
= sec(tan V/x ) tan (tan Vx ) -sec? (Vx )

) )

sec tanu'(_ Ian(tﬂnv'{_ sec’ »ﬁ)
2x

-

Question 5:
Differentiate the functions with respect to x.
sin(ax+hb)
cos(ex+d)
Answer
sin (ax + h} gl(x

The given function is f{ } =——, where g (x) = sin (ax + b) and
cos(cx+d)  h(x)
h (x) = cos (cx + d)

o gh-gh
o f T

Consider g (x)=sin(ax+b)

Let u(x} = ax +hﬁv{f} =sin{

Then, (vou)(x)= v(zr[x}) =v(ax+b)=sin(ax+b)=g(x)
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~ g is a composite function of two functions, v and v.

Put?=u(x)=ax+b

dav  d .
0 E[sm 1) =cost = cos(ax+b)
ot

d d, \ d, .\
E—E[m:nr]—E(uxhdr[b]—aﬂ}—a

Therefore, by chain rule, we obtain
_dg _dv dt

g'= o d e = cos(ax + h)-a=acos(ax+bh)
Consider h(x) = cos(cx+d)

Let _n(x} =cx+d, q{_v} =COs V
Then,(gop)(x)= q{p{x]} =g(cx+d)=cos(cx+d)=h(x)

~h is a composite function of two functions, p and g.

Puty=p(Xx)=cx+d

% diy[cos_v} —siny = —sin(ex+d)
dy d

el d
—1 v d — '_
dx dx((ﬁ } L{'{T{ET}+ iy

Therefore, by chain rule, we obtain
h  dg dv
i _dh _dq dy

= I E: _Sin{cx+d])<{_'=—ﬁ'SiIl[('.T+|£.IF}
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. acos(ax+b)-cos(cx +d ) —sin(ax+b){-csin(ex+d)}
[ms{::.x+a‘]]z

Sin[c"x +ﬂ'] y |

cos(ex+d) cos(ex+d)

~ aCﬂS{ftx + f}]
 cos(ex+d)

= acos(ax +b)sec(cx+d)+csin(ax+b)tan(cx +d )sec(cx +d )

+esinf(ax+b)-

Question 6:
Differentiate the functions with respect to x.

3 . 2 3
COsX7.51n {x' )
Answer

The given function is cnsx?‘,sinz{xi)

%[cos x -sin? (x*” = gin’ (x’}x %{msx‘ ] +cosx’ x %[sin‘" {x’}]

[ﬁinxi:l
)

= i 5 2 ' 5 ._ 5
= —sinx sin (x }x3.1' +25inx  cosx” cos X xa

Bl

= sin’ (Ij)x(—ﬂinx'ﬁ‘]xi[x"‘}+ cosx % 2sin (x")~

p—
=

¥ . BT 5 P 5 5 1

= —3x” sinx’ -sin’ [x' )+ 2sinx’ cosx” cosx’ -x5x
4 = 5 5 3 2 s 3 = 2f 5
=10x" sinx" cosx cosx” — 3x" sinx” sin [.,‘E )

Question 7:

Differentiate the functions with respect to x.

2, [cot {xl )

Answer
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% [2, |cot (xl]}
Ji cot

CGS( Sll"l

\.n'[-:osx'drsm x* sinx?
—Zﬁx
~ J2sinx* cos x? sin &
22 x

. 2 . 3
sinx”+/sin 2x

Question 8:

Differentiate the functions with respect to x.
cma(xf{;)
Answer
Let f(x)= cos(v';]
Also, let u(x)= Jx
And, v(r) = cost
Then, (vou)(x)= V{u{x}]
=v(¥x)
= cos/x
=/(x)

Clearly, fis a composite function of two functions, v and v, such that

t=u(x)=+/x
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o dt dyy o df )1 -]
Ihen,f;=dr(s,-'{;)= Lx-J: x?

And, @ _ ift:-:-sr] = —sint

df i
= .‘iil‘l(\."';}
By using chain rule, we obtain
dt dv- it
de dt dx
iy 1
=—sin|+/x |-
V)

——msm{sf’;}

~ sm{v‘q]
N

Alternate method

%[cﬂs(v’ﬂ] :—sin(ﬁ).di[&)

X

:_sm(@)xi‘”xi]

E-?r.x I"\.

1

. 1 -
==sinyxx—x*
2

_ —sin J:
2Jx

Prove that the function f given by

f{r] =|.r— I|, x € R is notdifferentiable at x = 1.

Answer

The given function is /(x)=|x—1/, xeR
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It is known that a function f is differentiable at a point x = c in its domain if both

lim "fl(c*h}_fllc} and lim f(c+h}—f{c]

are finite and equal.
i) I [ b

To check the differentiability of the given function at x = 1,
consider the left hand limit of fat x = 1
M1+ k)= (1 o l+h=1=1-1
i LR =7 () e h=1]=[i-1]
h—sl} h Tr—sll h
|.Iii1 -0 —h

= lim = lim (h<0=|h/=-h)
sty hair iy

Consider the right hand limit of fat x =1

S =) [+ h-1 |11

lim lim
Wi’ h il h
im0 g (h>0=[n=h)

fe—al" h h—ai" Jllil
=1
Since the left and right hand limits of f at x = 1 are not equal, f is not differentiable at x
=1

Prove that the greatest integer function defined by /'(x)=[x],0 <x <3is not
differentiable at x = 1 and x = 2.

Answer

The given function fis f(x)=[x].0<x <3
It is known that a function f is differentiable at a point x = c in its domain if both

lim "fl{c*h}_f[ﬁ‘) and lim f{c+h}—f(c]

are finite and equal.
i) h P b

To check the differentiability of the given function at x = 1, consider the left hand limit of
fatx=1
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f(1+h)-£(1) [14 h] [1]

lim = lim
h—) h b
-1 —I
= lim—— = lim =0

Fe—sll ,I[f fr—+l] l;jl

Consider the right hand limit of fat x =1

. f{l+h}—f{l]: - [I+h] [1]
bl h fr—all’®

1-1
=lim—-=1lim0=0
h0 h—ll"

Since the left and right hand limits of f at x = 1 are not equal, fis not differentiable at
x=1

To check the differentiability of the given function at x = 2, consider the left hand limit
of fatx =2

fim 7 GE2)

f1—il} fa—il

[2+h]-[2]
h

o 1=-2 0 -
= lim =lim—=m
= b=l fy

Consider the right hand limit of fatx =1

f(2+m)-1(2) _ [”'+f?] 2]

lim lim———
h—l)’ h f—3il"
2=-2
= lim =lim0=10
= R Ty

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x

=2
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dy
Find ¥ :
2x+3y=sinx

Answer

The given relationship is 2x+3 v =sinx

Differentiating this relationship with respect to x, we obtain

d d .
—(2x+3y)=—I/sinx
afr( ’ J ct'.r{ }
=4 (2x)+ d

d de

(3y)=cosx

ay
= 243 =CosXx
dx

ay

= S—J =cosxy—2
cx

cdy  cosx-2

"y 3

Find ﬂ
dx

2x+3y=siny

Answer

The given relationship is 2x+3y =sin »

Differentiating this relationship with respect to x, we obtain

i
dx

d o, _d .
9 (55)=2 (siny)

dx

(2x)+
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=243 _ cos yﬁ [By using chain rule]
ilx dx
f}:”:
= 2=(cosy-3)—
(cosy=3)—-
2
v cosy-3

Find d—J
dx

ax+by* =cosy

Answer

The given relationship is ax+hy" =cos ¥

Differentiating this relationship with respect to x, we obtain
d d o
—ax)+—|by" | =—(cosy
Lir[ J Li‘f(} l u’x( J}

49 oy
:,>u+hg(_1» }_a’_r{mb}} (1]

d, dy d oy

Using chain rule, we obtain —| ¥ )=2y—-and —(cosy)=-sin y—— 2

ng n e, w I u',r[' ) Jcir dx[ ) }dx (2)
From (1) and (2), we obtain

ﬂ+b><2v£=—sin vﬁ
© oy Ty
= (2by +sin I;r}ﬁ —
dx
Ldv o —a

dx  2by+siny

dv
Find
dv

xy+y =tanx+y
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Answer

The given relationship is xy+ v =tanx+ y

Differentiating this relationship with respect to x, we obtain

d d
d—(.n;v+;-2 )= E|{lan,xr + )

i
d dy oy d dy
= —(xy )+ )= ——(tan x)+ =
() g )= g ()
d dy dy 9 ddy . .
= |y fx)+x = |+2y— =sec’ ¥+ — [Using product rule and chain rule|
dx ddx dv ax
dy dy s oy
=y l+xr—+2y—=sec x+—
' dx g dx dx

::»{x+2y—l}%=seclx—y
¥

cdy  sec’x-y

Cdre (x+2p-1)

Find d—J
dx

X4 xv+ 0yt =100
Answer

The given relationship is x* +xy+ 3 =100

Differentiating this relationship with respect to x, we obtain

d ;o N d
X xy+ V)= 100
7wyt = g (100)

dx
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= 2x +[1r- d (x)+x- dy} +2y Y_o [Using product rule and chain rule|
Ty dx dv

:>21+,1i-|+1-dp+2_];f{v =0
dx dx

= 2x+_;»‘+[x+2y]%=0

) ﬂ__2x+y
Cdx x+2y

Question 6:

Find ﬂ
dx

x’ +x3y+ xu}'z +}:] =81
Answer
The given relationship is x +x3_1-‘+xy: +_1f‘] =8l

Differentiating this relationship with respect to x, we obtain

d g s 2 2 3 d
E{x +X VXV Y )=E{81)

din dia\ d d
::»E(x')+E(x'.v)+a{;v:’}+a(y') 0

= 3x’ +[_v%{x2 )+x° %}+[_t’3 %{-f]"‘x %(-1"2)}_3}'3 ﬁ =0

= 3x’ +|:_1|,, 2x+x° Qi|+|:_vl A+ x- 2_1:.ﬁ}+341:3 L"'IV:U
dx d

= {xg +2xy + 3_1:2)% + (3.1"" . Ex_v+_v") =0
dy —(3x3 +2x0 4+ _vz)

. dx (xg + 2.3’.]"" 3]’2)

Question 7:

Find ﬂ
dx

sin” y+cosxy=mn
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Answer

The given relationship is sin’ V+COSXV=T

Differentiating this relationship with respect to x, we obtain

d T O d
x(sm y+eosxy)= tﬁ_l:ﬂ:]

d .2 il
:-dx[S|n _}-')-I—dx (cosxy)=0

Using chain rule, we obtain

d ., o - dy
sin” y)=2siny sin v) = 2sin ycos v —
r[1 v)=2si '1(gr(' v)=2sin ycos) dlx

d . d . d ay
—(cos xy) = —sinxy—(xy) = —sinxy| y—(x)+x—
i dx friy b

[ dy . . d
=—sinxy| y.14+x—— [=—vsinxy —xsinxy—
e ax

From (1), (2), and (3), we obtain

i dy ] . dy
25in veos y—— = psinxy=xsinxy— =10
¥ de ) X £ dx

=>(2sin ycos y - xsin n}d—J = ysinxy
(ke
. . dy .
= (sin 2y~ xsin xy}i = ysinxy
alx
cdvy  ysinxy
Cdv sin2y—xsinxy

_ody
Find —
dx

sin” x+cos” y=1

Answer

The given relationship is sin” x+cos” y =1

(1)

(2)

Differentiating this relationship with respect to x, we obtain
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s ooy d
E[bl[‘l X+ Cos '1}_::1’.1‘{1)

= %(sinz x] I %(cns" _y) =0

o d
= 25inx-—(sinx)+2cosy-—(cosy)=0
dx[ ) v v)

. : dy
=» 2sinxcosx + 2cos y(-sin y)-— =0

¢
aj =0

—» sin 2x —sin 3‘_1,

. dy _sinlx
S dv sin2y

Question 9:
dy
d

) .[ 2x ]
v =sin -
l+x°

Answer

Find

. 2x
The given relationship is ¥ =sin '[ - ]

l+x°
. ,( 2x ]
¥ =sin .
1+ x°

. 2x
=8Ny = -
1+ x°

Differentiating this relationship with respect to x, we obtain

2= 575
] (1)

— C0s ], _— = (
dx dx
2x u
The function,—, is of the form of —.
1+ x v

Therefore, by quotient rule, we obtain
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 d i ]
d( Iy _[I+x‘).i{21}—2.¥~£(l+x‘]
dx |+X3)_ (l+xz):
(1+x7).2=2x-[0+2x] 240424y 2(1-x7)
- . = ReaE e e )
(I+.r‘) (1+x‘) (l+x“]
Also, sin y = 2':

+ X
- 2¢ Y
=08y =fl=sin” y = ||l—[1 1} =
+x°

| 2y )
|(1_x ) C=x
\(Lext)” 14 ~0)

From (1), (2), and (3), we obtain

I_x_‘- XE_E{I_IE}
l+x* dx (1+x:].,

dv 2
——= -
dv 1+x°

Question 10:

Find ﬂ
dx

1
IXx—x

The given relationship is = tan 1[] 3 ]
-3y
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A 3x=x"
y = tan —
1-3x°

Jx—x
— tan y = — (1)
= 3X"
3tan L —tan® © _
It is known that, tan v = J 3 (2)
1-3tan>?
3

Comparing equations (1) and (2), we obtain

i)
X =tan i

Differentiating this relationship with respect to x, we obtain

i{x} = iL tan “]TJ
dx dx 3
div)
e\ 3)
1 dy
33 dr
dy 3 3

= | =sec”

|

,
¥
A

+ ¥V + ¥V
sec”  l+tan” -
2 2

Answer

The given relationship is,

Page 57 of 144



Class XII Chapter 5 - Continuity and Differentiability

Maths

I./I_x?

y = cos .

L1+x'

1—x°

=5 oS ) = .

14 x
I—tan® 2 —
=N EI: .
l+tan?? 1H%

2

On comparing L.H.S. and R.H.S. of the above relationship, we obtain

y

tan—=x

Differentiating this relationship with respect to x, we obtain

sec? ¥ d _1:] dl[x]

2 acl2)
ﬁscczixlﬁﬂ
2
dv 2
friy cec? ¥
2
dy 2
:;»T}- :
ax ]—Lan1"1
2
cdv ]
Tdv 14X
Find &
e
v =sin '[ — ,J,ch«:l
+x°
Answer

. f1=x
The given relationship is ¥ =sin ' -
l+x
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(1=
¥ =s5in .
{1'1'1"]

) 1—x°
== 5Iny = =
1+ x°

Differentiating this relationship with respect to x, we obtain

;_3{5,["}:]:%[1—::’] (1)

9
dx 1+ x°

Using chain rule, we obtain

o
dx

dy

dx

(siny)=cosy-

A2
S b e

d I—x:]: (|+_r3).(|__r3) _(l_x:)l(nf) [Using quotient rule|
dx | 1+ x° (]+x"]2 |

_ {1+.T:]{—2x}—(11—x3)-{2x}

[I +f)'
_ “2x—2x" —2x+2x°
(1+x'1]:
—dx
= 0 .l 3
(1+x'1]‘ G)

From (1), (2), and (3), we obtain
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2x dv = —Ax
1+x° dx {14_13)?
dv _ -2
de 1+x°

Alternate method

(1=
¥ =s5in -
{1'1'1"]

»

) l—x"
:>51ny=] -
+x

:>(l+.r:)$il1y =1-x

= (l+siny)x* =1-siny

. l=siny
=x=—
l+sin v
(cm Y sin 1’]
) L 22
=y = -
S
Ccos— +sin
2 2
V
C05~— —5in -
. 2
Cos - +.~'.in']
2 2
v
l—tan-
=X = 2
J_.i'
1+ tan
2
'H »
:,u.rztan(——}—w
4 2

Differentiating this relationship with respect to x, we obtain
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dy -2
= = -

de l+ax°
Question 13:

Find ﬂ
dx

Answer

2x
The given relationship is ¥ = cos '[] J
+x°

| [ & ]
¥ = COS -
' |+ x

2x
= COS V= =
|+ x

Differentiating this relationship with respect to x, we obtain

4 (cos :):i.( 2x ]
PR P

Wy od d .
l4+x | [2_‘{'}—21'- 1+x
:>—51n.1»'-;:( ) - a’x( )

i (1+2)
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s (1+x%)x2-2x-2x
=5 - I-ms’yd_J:( )
v

(
T

Question 14:
Find ﬂ
dx
1 |
'=5in"(2x\.'l—x3), —_—— X e —
’ NG
Answer

The given relationship is ¥ = sin "’ [lhn'l —x° ]

¥ =Sin"(21‘w.|'1—x:)
= siny = 2xyl-x’

Differentiating this relationship with respect to x, we obtain
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cos»——Z[ ”(\n'rl )+~f|—x3 g_

dx
— _2 -
= /1 -sin” Lj——i{z ‘x_ - I—x']
X 1—x"

e

-2 gy 1-2x
= J1-2x") —=2
Jim2ey o 12
n(l—lﬁ]“’izz{l_h ]
dx 1—x"
dy 2
dx  \1-x*
Question 15:
Findﬁ
dx

J = sec '[#) ﬂ{;‘{L
' 2 -1) J2

Answer

|
The given relationship is v = sec '[«—]

2x =1
y=se¢ |—s—
' 2y -1
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= cosy=2x" -1

= 2x" =1+cosy

1.?
— X =C05—
a

Differentiating this relationship with respect to x, we obtain

= ——===
sin 2 i
i
dy -2 -2
Td Y
i ! 2 ¥
s 1-cos’ 2
2 2
dy 2
de  \1-¥*
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Differentiate the following w.r.t. x:

X

&
sin x

Answer

Let vy =—
sin x

By using the quotient rule, we obtain

sood oy od
dy hlnxdx(e ]I—L e (sinx)

dx sin” x

Sin_r.{e" ) —e"-(cosx)

sin” x

¥ = N
¢"(sinx—cosx
= — ),.T;tmt,nEZ
sin” x

Differentiate the following w.r.t. x:

L3 I

.
Answer
1

s T

Lety=e¢

By using the chain rule, we obtain

Page 65 of 144



Class XII Chapter 5 - Continuity and Differentiability

Maths

dvy  d o,
E - .J_r[{ )
ﬁ — Jn.in ' 1i(§jin_l -T}
dx dx
4uil I-T I
= " 2
N
S ve(-1)
e TS

Show that the function given by f(x) = e**is strictly increasing on R.

Answer

Let x, and x, be any two numbers in R.
Then, we have:
X o<x, = 2x <2x, e < = f(x)< f(x)

Hence, fis strictly increasing on R.

Differentiate the following w.r.t. x:
Answer
Let y=e"

By using the chain rule, we obtain

ﬁ_ d
dv de

3

; sod ;g . 3
(E" ]=E* —([x')=e" 3x7 =32
(:1{-\- N /

Differentiate the following w.r.t. x:

sin[tan e ")
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Answer

Let y =sin(tan 'e )
By using the chain rule, we obtain
ﬂ o d

E[Sin(tan" E'”)]

dr ¢

=cos[tan 'e *}-dl_(tan e ]

=cos(tan e *}; d (a T}

-1 _—x'
_ cns(tan j.f' }-e"T i —.r]
l4+e " e
e’ tus(lan'] g’ )

- (1)

l+e™"

s cos(mn" e')

=7
1+

Question 5:

Differentiate the following w.r.t. x:
log(cose" )

Answer

Let y = log(cose”)
By using the chain rule, we obtain

% = %[Iﬂg{cuse" ]]

= - -—{cm;e’}
Cos¢
1 Vo
= l{—%lnﬂ*}- [e‘}
cose dx
—sine”
= =
cose

; n
=-e"tane’,e" #(2n+ I}E,n eN
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Differentiate the following w.r.t. x:

5

e +e" +..+e

Answer

(e" +e" +..t+e” )
elx

@ Gl ) G ) G )

e bl 2ol Sl e
=e" (e x2x)+(e” %302+ (e x4x7 )+ (e x5x")

? L DU DL SN
=" +2xe" +3x7e" +4x7e" +3x7

Differentiate the following w.r.t. x:
Vet x =0

Answer
Let y=+e""
Then, y* =¢"

By differentiating this relationship with respect to x, we obtain
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= 2y—= el i(\-";] [H}' applying the chain I'Lllu]

Differentiate the following w.r.t. x:
log(logx),x>1

Answer

Let v = log(log x)

By using the chain rule, we obtain

dv d .
—=—/|log(logx
dx G’I[ g(log }]
]
= ~i|[log,r}
logx dx
11
logx x
= ] ;x> 1
xlogx

Differentiate the following w.r.t. x:

Cos X

=10

logx
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Answer

COSX
Let ¥ =

log x

By using the quotient rule, we obtain

dy j{cosx}xlogx—cua.'xx i{lngx]

_ dx ¢
dx {Iugx}'
—sinxlogx—cosxx !
_ x
(logx)’
_ —[xlog x.sinx TCDSA‘] 50
x(logx)

Question 10:

Differentiate the following w.r.t. x:
cos(logx+e),x>0
Answer

Let v = cos(logx +:3"}
By using the chain rule, we obtain

%:—sin(Iogx+e“)-%(log:r+e"]

=-sin|logx+e" ) da log x +i e
e hy
b ¢ ]

i
= —sin(logx+e”]-tl+e"']
X
= —fl+e" Hsin{logx+€”),ﬂf =0

I\. X /I
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Exercise 5.5

Question 1:

Differentiate the function with respect to x.

cos x.cos 2x.cos3x

Answer

Let v = cosx.cos 2x.cos3x

Taking logarithm on both the sides, we obtain

log v =log {i.:us x.cos2x.cos 31‘]

= log y=log [cus x:'l + Iog{cus 21‘) + log (-;:{}5 3x]
Differentiating both sides with respect to x, we obtain
%% B colsx % m“}_'_ms]h -%{mslrﬁ m;l'c I i
dy y[_ﬂ_ﬂl d (3y)_Sin3x d 3-*)}

cosdx dx

;. =—00s X.cos 2x.cos 3x [tan x + 2 tan 2x + 3 tan 3x]
[

Question 2:

Differentiate the function with respect to x.

\/ G -2)
(.r—3j[x—4}(x—5]

Answer

[ G0e-2)
“*”"Jt.r—3>(x—4}+:.r—5}

Taking logarithm on both the sides, we obtain
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oz v =lo (x—1)(x-2)
i Ith—ﬂh—ﬂ&—ﬂ

(x-1)(x-2) ]
5)

(r-3)(x-)(x-

= log r—llog
T2

=logy= %[Iﬂg{(x— (x-2)} —Iog{(.r—?r}{x—ﬂ(x—i]}]

= logy= %[Iﬂg[_t—I]+Ing(.x—2}—Iog(x—3}—Ing(.x—4}—log[.r—5ﬂ

Differentiating both sides with respect to x, we obtain

1 d 1 1
——x=-1)— —(x=-2)- 'i
I d_‘r'=| x—1 d.x(x } x—=2 d ( ] x=3 dt(l
vy 2 1 fd
’ —|x-4)- —|x-5
x—4 a’r[ ] 5 dx [r }

$Q=£[1+1_1_1_1]
dy 2lx-1 x-2 x-3 x-4 x-5
cdv 1 (x-1)(x-2) [|+1_1_1_|}
Cde 2 (x=3)(x=4)(x=5)Lx-1 x-2 x-3 x-4 x-5

Question 3:

Differentiate the function with respect to x.

(logx)

Answer

EOIS T

Cis X

Lety =(logx)
Taking logarithm on both the sides, we obtain
log v :cosx-lng{log ,'c}

Differentiating both sides with respect to x, we obtain

Page 72 of 144



Maths

Class XII Chapter 5 - Continuity and Differentiability
1 dvy d d
—-—=—1/cosx)xlog(logx)+cosxx—1| log|logx
v dx r:r’.r( ) g{ ¢ } dx[ { & }]
1 dy . Il d
- _sin xlog(log x)+cosxx ~—(log x)
v dx logx dx
dy . sx 1|
— & =y| —sinx lug(lug x] y SO5X
dx logx x|
fh" G X COsx .
So—=[log x —sinxlog(log x
dlx (log ) [.‘clngr g(log }i|

Differentiate the function with respect to x.

-1_.'! zhl:l.T
Answer
I-’Et_]': — x'r _Exi:n'r
Also, let x* =w and 27" =y
SLV=u—v
dv  du dv
—_— = —
dr  deodx
u=x*
Taking logarithm on both the sides, we obtain
logu = xlog x
Differentiating both sides with respect to x, we obtain
1 du d d ;
——=|—[x)=logx+xx—/(logx
u dx |::ir[ )xlog .fir[ ¢ }}
du |
= =H|:1xlngxixx
dx x|
du .
= =x"(logx+1)
v
= du =x"(1+lo x}
el .
vV = zsinx

Taking logarithm on both the sides with respect to x, we obtain
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logv=sinx-log2
Differentiating both sides with respect to x, we obtain
1 dv d
——=log2-—(sinx
v odx . dx{ ]
av
= —=vlog2cosx
dr

dv ;
= & = 27 oo x log2
dx
fﬁ: x sinx
== =x"(1+logx)-2""cosxlog2
dx

Question 5:

Differentiate the function with respect to x.

(x +3}1_(r+4}“{x+5}“‘

Answer

Lety=(x+ 3]1 x+ 4]3 Ax +5}“l

Taking logarithm on both the sides, we obtain
log y =log(x+3) +log(x+4) +log(x+5)’
=logy =2log(x+3)+3log(x+4)+4log(x+5)

Differentiating both sides with respect to x, we obtain

]—_ﬁzl- N :r+3}+3-#-i{x+4]+4- -i{x+5}
Vv odx x+3 dx x+4 dr X+5 dx
dy { 2 3 4 }
==y + +
dv T x+3 x+4 x+5
dy 2 3 4 2 3 4
~=(x+3) (x+4) (x+5) -
:}uf'r [‘H-J]{H- ]{H- ] L:+3+.T+4+,r+5}
:’ﬁz{_‘c+3}‘{_t+4)"{_r+5]4~ 2(x+4)(x+5)+3(x+3)(x+5)+4{x+3)(x+4)
ek (x+3)(x+4)(x+5)

= % = (x4 3)(x 0 4) (e 5) [ 2( +9x420)+3(x" + 8x+15) + 4(x* + Tx+12)
% =(x +3-]|(,1:+=I)2 (x +:3}'1 [91: +70x+ 133)
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Differentiate the function with respect to x.

s X [ [
[ |I+

s | +x)
X))

Answer

P x .
| 1 [+ ]
Lct_1==| x+— | +a ¥
\ X
1 [1+1]
Also, let u :[1‘+—] andv=x" "“
X

V=tV
::~£:E+ﬁ (1)
de  de  dy

3T

Then, u = [_1' + ]—J

X

Y
= logu = Iog[x+—]
x

%

:]og:.r—x]og(.r+lJ
) X

Differentiating both sides with respect to x, we obtain
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l-ﬁ=i{x}x]og[x+l]+xxi Iog[Hl]
u dv dx x)  dx S ox
1 du

1 ] i 1
= ———=lIxlog| x+— |+xx | x4
u oy x [ I] che X
X+—
X

d 1 X 1

= —=u|log| x+— |+ %[ 1=—

elx X [ I] X
X+

1| x* =1 |
X+ — ——+log| x+— .2
.TJ | x+1 g[ xﬂ { }

(1)
= logv=log| x *

1
:>10g1:=[l+—]logx
X

Differentiating both sides with respect to x, we obtain
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I dv | d 1 1Y d
—= (11— J xlugx+[l+ ] log x
vody [del x x ) dx

1 dv 1 1Y 1
= ——=|——|logx+|1+— |- —
v dx x° x,) x

1 dv logx 1 1
===t —+—
v dx X ox X
dv |:—10g.r+x+|i|
= —=v—F
dx x
."I-r.l\ —_ ¥
:}rfvzx[ _T,[-'H‘l jlugx] -(3)
dx X

Therefore, from (1), (2), and (3), we obtain

dy ]]" x* -1 [ ]] |:"l.:[.=:+]—log.rJ
—=|x+— —+log| x+—||+x —_—
dx L x x4+l X x

Question 7:

Differentiate the function with respect to x.
(logx)" + "™

Answer

Let y =(log x]l T

Also, let u = (logx)" and v = x"*"

Sy=su+v
de  dv  dx
u = (log x)*

X

= logu = Iag[{lng x) }
= logu = xlog(log x)

Differentiating both sides with respect to x, we obtain
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| due o

o dx[x}xlng{h}gx}+x~: [11"2“*}%1}]

::»%:u Ixlog (log x)+x- @ E{ll\ﬂx}}

dfl' ks I

— =(log log(lo -

ex (logx) i g(logx) log x x:|
o = (log x)’ Iog{]og w:}+

elx log x
_, du ~(logx)’ Iug{lngx]-k}gx+11

dx | log x

dr.- -1

dx =(log x)' [I+Iugx.log{10gx]] -(2)
v :xln.lgx

= logv= Iog(x"‘x"]
= logv=logxlogx={(log x}:

Differentiating both sides with respect to x, we obtain

L ':; 0 [{lngl}}

1 dv d
——=2{logx)- 1
- v dx (logx) d'x{ &)

:}'d" 2v(log x)- :
x

dx
& dv P log x
dx x
d logr-1
== =2x""" . log x -(3)

Therefore, from (1), (2), and (3), we obtain

" =(logx)" I I:I +log x.log(log \"}] +2x" . log x
X

Question 8:

Differentiate the function with respect to x.
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(sinx)" +sin”'x
Answer
Lety = (sinx)" +sin”' v/x

Also, let = (Sin x}x and v =sin "' x’rJ_f

Ly=utv

B _du dv (1)
de  dx  dx '

u=(sinx)

= logu = log(sin x]r
= logu = xlog(sin x)

Differentiating both sides with respect to x, we obtain

ldu d - d :
= —— E(x}x log (sin x)+x xg[mg{sm x}]
= % =u|:] -Iug{ﬁinx}+x-si;x-%[5in J.}:|
dii . x . X
= —= x|l . - COS.
= (sinx) { og(sinx)+ < eos t}
du . X .
:>E=(sm x)" (xcot x+logsin x) -(2)
v=sin"'x

Differentiating both sides with respect to x, we obtain

Therefore, from (1), (2), and (3), we obtain

& . | |
E:[smx} (xcotx +logsin X}*f

T
LN X—X
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Differentiate the function with respect to x.

sinx

4 (sinx )™

Answer

Let y= x.\inx + [sin x}um.r

Also, let w=x""" and v = (sin I}uns.-

Ly=u+v

de  dy dx

= x"-'ln.l

= logu = Iog{ix““” ]

= logu =sin xlog x

Differentiating both sides with respect to x, we obtain
Vdu_d

oy - I(“n .r}- log x +sin -‘f'%(lug x)

du . 1
= —=u|cosxlogx+sinx-—

dx x

= J_ o ’VCCIS.TIGEI+ >0 x—‘ .(2)
dx x

v=_sinx)""

= logv = log(sinx)"
= logv = cos xlog(sin x)

Differentiating both sides with respect to x, we obtain

Page 80 of 144



Class XII Chapter 5 - Continuity and Differentiability

Maths

Tev_ i(t.:-:rs x )« log(sinx)+cos x %[Iag(sin r]]

vy dx y
d (sin x}J

sinx dx

:>mr—r[—qinx1ng{<s1'nx}+::mx- l
0 sinx.log (s SX-—

dv o emsx| . Cos X
= —=(sinx)""| —sinxlogsinx+ Cos X

dx sinx

= ? =(sinx)""" [~sin xlogsin x +cot xcos x|
X

= v _ (sinx)™" [cotxcos.x—sinxlogsin x]
A

From (1), (2), and (3), we obtain

% _ s [cos.xlug.x + m] +(sinx)™" [cos xcot x —sin x log sin x]
x X

Question 10:
Differentiate the function with respect to x.

2 +1

XCORT " +
¥ =1

Answer

X +1

ALiE T

Lety=x -
=1

x +1
and v ="

x =1

A0S Y

Also, let w=x

Ly=u+v
d_du_dv )
dr  dx dx

XC0RY

UH=x
:> ]ﬂgu = IDg{xIL’ﬂ\I]
= logu = xcosxlogx

Differentiating both sides with respect to x, we obtain
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Ldu _d (x)-cosx-logx+x- d (cosx)-logx+xcosx- d (logx)
udv dx S dy BT RO g 08

du : 1
= =u|1-cosx-logx+x-(—sinx)logx+xcosx-—
X

du o .
= o = x""" (cos xlog x — xsin xlog x + cos x)
:‘>@a\:"“"[msx(l+I-::rgx]—.rsi11.xlug.x] .(2)
e .
X +1
V=—
xr =1

= logv= Iog(xz + I)—I{}g{x: —l)
Differentiating both sides with respect to x, we obtain

ldv_ 2x N 2x

vde x+1 x7 -1
dv Zx(xl—l]—Ex{xJH]

:>3=V (x?+]){x3—l}
£=J¢'1+]>< ~4x
de x -1 (x:+]}{xz—l)
dv —4x
D —— el 3
dx [x:'—]); (]

From (1), (2), and (3), we obtain
4x

'f_bj:xl-ﬂm.l:cnsx[l+Ingx}—xsin xlngx]—( J
' =1)

dx

Question 11:

Differentiate the function with respect to x.

1
(xcosx) +(xsinx)s
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Answer

_ !
Lety =(xcos x}\ +(xsinx)s

1
Also, let u=(xcosx) and v = (xsinx)

A e T
r:,h dzf dv
ciw: dx‘ u{'c

u ={xcos x}t

= logu = log(xcosx)

= logu = xlog(xcosx)

= logu = x[log x+log cos x|
= logu=xlogx+xlogcosx

Differentiating both sides with respect to x, we obtain

:,:;: ;i{ Iﬂgx}+i[x|0g0{}51)
::-%=1.-H]ngx-£{.x]+x-%{]ngx]]r {Iﬂgcmx %{x}ﬂc —(logcos x

=(xcosx)’ [[]ogx-l+x~£]+{lugmsx.l+x-m]” .%{WSI]H

- %:(xmsx [(lﬂf;xH}Jr{lGEm”* cos x (_Smx}H

(xcosx) [I+Ingx}+{]ngcmx xlalu)]

:>d (xcosx "[I xtanx+{]ﬂgx+lﬁgcn';x}:|

d ‘
= Ccos 1=xtan +I-::- 05
” x X [ —xlanx g xcC x]:l

i
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|

v:{xsin x)
1
= logv = log(xsinx)

= log v:]—lng(.rsinx}
X

= logv= ]—{Iug x + logsin x)
X

= logv:]—lngx+llogsinx

X X

Differentiating both sides with respect to x, we obtain

] u"v_ dfl lurrJ+ d {I ]{ll(ﬂiﬂ‘t']l:|
vdr delx o) dy| x0T

ladv [ di1Yy 1 d . di1y 1 d
= ——=llogx-—| — |+——(logx) |+| log|sinx)-—| — |+——

vde | 8t ci‘c(x] X -:a’x{ E‘I]:| |: 'l:'{ r} EI\'[ ] i

If.r’v 1 11 : ]

logx-| —— [+—+— [+]| log(sinx)-| ——
vy i 8 [ x"'] X x} { e ][ x‘]
Iﬂg (sin r] ]
- —{1—10 ‘r:} 4+ COS X
vcr’x x xsinx
I_ _ Ty _I 1 ) 4 t

) Z{Ifiil‘]x}x | ]?E‘l+ ﬂg[SH'I.lz] X oo .1']

elx S x

L[ 1= log x —log (sin x)+ xcot

DHI_vz[rsinx}:r oL 0*15(3[“ T] Yo x:|

dr i X

' L[ 1= loe (xsinx)+xcot

::»ﬁz(.xsin.x}x E(T : x) ! 1

dr i X

From (1), (2), and (3), we obtain

X

o {IOg{sinr}}}
ins)|

X

X sinx o

(.stx} [l—ttanx+log{xcos.x}]+ xsinx)s [

Question 12:

Find i of function.
dx

)

cotx+]—log[xsmx]}
X
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'+t =1
Answer

The given function is x* + y" =1
letxY=vand y* =v

Then, the function becomesu + v =1

L (1)
de  dy
u=ux

= logu = Iog{,t-"}

= logu = ylogx

Differentiating both sides with respect to x, we obtain
1 du
wds

:»ﬁ=u[lowﬁ+ Jl}
dx = e ! x

dy d
logx—+yv-—(logx
gx—+) dx{ gx)

x
du . dv oy

= —=x"|logx—+— w2
d I[ E'J‘:ﬂﬁr 1‘] {}

]J:_}.l"

= logv= Iog(}'")
—logv=xlogy

Differentiating both sides with respect to x, we obtain

1 dv d i
5 = ]{) 1 x)+x- lﬂﬁ 3
v dx e a’x( ) dx[ ey)
dv 1 dy)
= —=v|logy-l+x-——
dx vy dx )
SN {lugwi@ -(3)
dx 5 ydx

From (1), (2), and (3), we obtain
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. e i ) v
x! (Iogx;v-p']_]_‘_yl {Igg}%i—}] =10
rox el

el \ ¥
dy

— {x-" log x + xy‘" } i == (yx-"" + " lug_}»‘]

cdv w' Ty log y

a1

dx ¥ logx+ xp
Question 13:

Find i of function.
dx

yr=x'

Answer

The given function is ¥* = x"

Taking logarithm on both the sides, we obtain
xlog v=vlogx

Differentiating both sides with respect to x, we obtain

]ugy-%(x}+ 1‘-%“05'}!) :lug_r-i{y}tv-%{lugx]

I dy ey |
=logy-l+x-— —=logx-—+y.-—
o v odx ¢ dx ! x
3 FJ L] 2
:}-]Og_}‘+—i Iogxﬂrl'
v ox de  x
3
i(——lnngdy:y—logy
Ly
. x-ylogx @:,v—xlog,v
¥ dx x
cdv _y[y-xlogy
Tdv x| x—vlogx
Question 14:

Find i of function.
dx
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¥ x

(cosx) =(cosy)

Answer

The given function is {CGSI}F =(cos _'lf}'T
Taking logarithm on both the sides, we obtain
vlogcosx = xlogcos y

Differentiating both sides, we obtain

dv d d d
logeosx-—+ y-—(logeosx) =logcos y-—(x)+x-—(logcos v
B dx > cir( € ] & ) dﬂr( } n{w[ € ]
av d i
= logcosy—+ - c—(cosx)=logcos y-1+x- «—{cos v
¢ dx T cosx dx( )= log.cos. cos ¥ dr[ Y)
ﬂj" L" - x . d‘l_.l
= logeosx—+——[—sinx)=logcos y+ =5 y)-—
¢ dr  cosx [ } BEOSY -:n:-s_v[ ' ] lx
= log cos.rﬁ — ytanx = log cos y—xtan Lﬁ
dx ox
dy
= {Iog Ccos.x + xtan y} e = ytan x+ logcos v
X

_dy  ytanx+logcosy

dy xtan y+logcosx

Question 15:

ch

Find —= of function.
dx
xy ="

Answer

The given function is xy = ¢!

Taking logarithm on both the sides, we obtain
log(xy) = log(e"” ]

= logx+logy=(x-y)loge

= logx+logy =(x-y)xl

= logx+logy=x—-v
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Differentiating both sides with respect to x, we obtain

d dy
—(logx}+—|1 N=—lx)-—
{ﬂhr} ."x{ogl] n’x{r} dx
1,14 _| &
x o vy elx
/ PR
:*~|l+i|dl—']—l—l
I, ¥ dx X

Find the derivative of the function given by f'(x)=(1 +x}(1 +,r:}(l+,r4)(l —x“) and hence

find /7(1).

Answer

The given relationship is .f'{-‘f}=(l+x}(1+,r3)(l+,r4){l—x*)
Taking logarithm on both the sides, we obtain
log £ (x) =log(1+x)+log(1+x" ) +log(1+x*)+log(1+x")

Differentiating both sides with respect to x, we obtain
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1 dr, { d 2y, o gy, d
f(y,] 0 I:j {x):lz ;}' log (1+x)+ T lng(l+x')+f£¥ Iog(l +x'}+ - lng(1+.r3)

) I 1 d 1 d
j{)_mc_ +l)+l+r (fr[]+ ) 1+ x* c,a’Ju,(|+ )+|+JLH a’x[|+ )

(

( )|: ~2x+ 14-413+ ]H~Hxi|
]+r [+ x° l+x l+x

] i ] 2. 4t 8y
" (x}={l+.x}(1+x“)(l+.~:*)(]+.r*){]+l_+Hiz ]

Hence, f*(1)=(1+1)(1+1°)(1 ”")(HIH]LL ' 12+x|]-“ " T:‘ " ?iﬂ

2
zmx[w]
2
=16=x 15 =120
2

Differentiate {x{ —5x +f'_"'.){,'|:1 +7",1:+9) in three ways mentioned below
(i) By using product rule.

(ii) By expanding the product to obtain a single polynomial.

(iii By logarithmic differentiation.

Do they all give the same answer?

Answer

(i) Let y=(x° —5x+8)(x'+7x+9)
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letx’ =5x+8=wandx' +Tx+9=v

Ly=uv

— % = %-vﬂr-% (By using product rule)

L :i(.x3 —Sx +3)-(x"+?x+‘-))+[x: —5x+8)-i[x* +7x+9)
dv  dx cx

:,;ri” = (Ex—S](x; +T".Jn:+‘:7|']+(.:r2 —5x +8){3x3+?}

X

dv

= == 2x (' + 7x4+9) - 5(x +?x+9]+x3(3x3 +7)-5x(3¢° +T)+E(3x: +?)

dx

= dy =(2x* +14x° +18.x]—5.x-" —351—45+(3x* +?.1-f]—|5x-‘—35x+ 24x° + 56

ax

% =5x" = 20x" +45x° =52x +11

(ii) p=(x" —5x+8)(x" +7x+9)
=x" (x4 ‘?_r+'=}] = S5x(x"+7x +'=)] +3(:¢"‘ +7x+ 9}
=x"+7x +9x" = 5x" —35x" —~45x +8x" + 56x+ 72
=x" =5x +15x7 - 26x° +11x+ 72
dy

2D sy 15y - 2657 41134 72)
dr  dx

d; v dyy d; d d d
:E(_r ]—JE(X )+]SE(I )—Zﬁa[x )+Ila(x)+£{1'2]
=5x" =5x4x  +15%3x" =26 2x+11x1+0

=5x 200" + 4527 —52x+11

ity ¥ =(x" —5x+8)(x" +7x+9)
Taking logarithm on both the sides, we obtain
log y = 1Dg(x: —5x+ 8} + Iug{f + ?x+9)

Differentiating both sides with respect to x, we obtain
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ldy d , d
’ a;x = If:g[:x' —5x+3)+ N Iﬂg(x" +?x+9]
:blﬂ:.\;i[xﬂ _5x+8)+;;‘i(_‘;"{+?x+@]
yvdx a7 —=5x+8 dx X +Tx+9 dy
aﬁ:_ ] -5 ] ; 2
jdx_}[x:—5x+3x(2x :‘r}+x1+?x+qx(3\x +?)}
ﬁg:[f—ix+8)(x"+?x+‘}) FI_S + f’x:J'? }
o X —3x+8 x +T7x+9
: (2x-5)(x" 4+ 7x49) + (327 +7)(x* ~5x +8
:3*{@=(.r:—5.1‘+3}(_¢-‘+?_~;+9) ( X }(I-j- x+ ]+(_':x + ](‘c X+ )
dx (x' —5Sx+ E)(x' +?x+9)
=>%=21(13+Tx+9)—5[x‘+7x+f}]+3x3(x:—51+8]+?(12—51+E)
.. =(2x" +14x7 +18x) = 5x" = 35x— 45+ (3x" —15x" +24x7 )+ (7x" = 35x+ 56)
dx
ﬂg::ﬁx*—mf+45x:—52x+]]
dx

v
From the above three observations, it can be concluded that all the results of 4 are

dx

same.

Question 18:

If u, v and w are functions of x, then show that
o du dv dw
—(wvw) = —vw s — W uv.—
dx alx ax o

in two ways-first by repeated application of product rule, second by logarithmic

differentiation.

Answer

Let y=uvw=u(v.w)

By applying product rule, we obtain
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dv  du d
— =—Jvw)ti—vw
e (A0 B ()

dv  du dv dw . .
== VW —— WY — Again applying product rule

o [ i dx} (Again applying p )

dv  du dv dw
==y WU — WY —

e dx dx edx

By taking logarithm on both sides of the equation ¥ = ir.v.w, we obtain
log v =logu+logv+logw
Differentiating both sides with respect to x, we obtain
1 dv d id d
= logu )+ logv)+ log w)
v dx a’,r{ ) dx( : d_t{ :
ldy_ldu 1dv 1adw
vody wdy vde wad
. ﬁz_v[ldj+lﬁ+icﬁ1’]
dx wde vde wdx
. dy :u.v.w.[ 1 du N lav 1 a’wJ

+
wde vde wdx

dx
dv  du dv dw
I.-. T — ,-v,,-H_:.'_H. .-H:+u.-'v.
de  dx dx dx
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If x and y are connected parametrically by the equation, without eliminating the

ay
parameter, find —‘1.
) dx
x=2at’, y=at’

Answer
The given equations are x =2at” and y = ar’

— -‘.f.‘L' l'-l‘r 2 d 3
Ihen,E=E(2m }=2a-a{r )=2a-2r=4m

ﬁzi{
di  dt

P

ay
Cdv [a’r‘ _4ar3 _g

ar*)=a-%{ﬂ}=a-4-i1’ - 4at®

Uy /a{r]  dar
\ ol

If x and y are connected parametrically by the equation, without eliminating the

dy
parameter, find u’_

iy
x=acosf,y=>bcosb

Answer

The given equations are x = a cos 6 and y = b cos 6

Then, o _ iﬁ[acosﬁ'] =a(-sinf)=-asinf

di d
Y _ 9 (hcos0)=b(-sin0)=-bsin®
dd do

dy
Cdv [a’ﬂ, _ —bsind b
"dr_[car‘w|_—asin9_a
dae
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If x and y are connected parametrically by the equation, without eliminating the

parameter, find ﬁ

x=sint y= cosJ'Zt

Answer

The given equations are x = sin t and y = cos 2t

Then, o = i[.‘;in t)=cosi
drdt

v od . 1 .
@ _ ‘—[ccrs 2¢)=—sin 2t -L{ZI] =—25in2f
df it dt

/(if‘v'
v L dl —2sin2t -2.2sinfcost }
LAy — = =—4sin¢

=
I

" dx [u’x cost cosi
dr J

If x and y are connected parametrically by the equation, without eliminating the

_dy
parameter, find —=-.
dx
4
x=4, y=—
I
Answer

4
The given equations are x =4r and vy =—
[
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A i i
£-4(0)-+3f)-o(3) 5
L}jr —
v la) (7] -

Question 5:
If x and y are connected parametrically by the equation, without eliminating the
_dy
parameter, find —
dx
x=cosf —cos 20, v =sinf —sin 20

Answer

The given equations are x = cos —cos 26 and y = sin ) —sin 26
Then, e _ i(msﬂ—cm 26) = i({:n.@; a) - i(cus 26)
df 4o dt dd
= —Sinﬂ—(—ZsinEE?}: 25in 28 —sinf
@ _ i[s‘.in 8 —sin26) = i(sin d) —i(sin 26)
de  de de do

=¢osH —2cos2d

dy
. r.{v_(dﬂ]_cusﬁ—km?ﬁ
oy _(dxj_ 2sin2¢ -siné
L dd

Question 6:

If x and y are connected parametrically by the equation, without eliminating the

parameter, find ﬁ

ey

x=a(@-sind), y=a(l+cosd)
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Answer

The given equations are x=a(f—sind) and y =a(l+cosd)

Ix d d ..
Then,f—=ar|i— ) ———(sind }=a l1—cosé
dy [ d d . X
—=g|—(1)+— G)|l=al0+(—sinf)|=- &
10 a_dﬁ()+d€[c05 }] a| 0+(-sin@)]=—asin
ﬁ] rgin® cos? o
.ﬁzxﬂ’ﬁ' _ _asing =-5:,1r12|c1:-52=-+t:«:1_':.2=_mtE
dx E] (J{]_COSE} jsi“!E Sil‘lE 2
dd 2 2

Question 7:

If x and y are connected parametrically by the equation, without eliminating the

_dy
parameter, find —

dx
sin’ ¢ cos” f
= L V=
Jcos 2t \."' cos 2t

Answer

sin’ 1 cos’ t
and y =

Weos 2t Jeos 2t

The given equations are x=
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dc d| sin't

Then,—=—| ——
ot di[ﬁcosZJ

di. s L d

Veos2t -—(sin” t)=sin’ f- —~/cos 2¢
_ dr( ) dt
cos 2t

. d 1 o
Jeos?2r-3sin’ 1 (sint)—sin® 1x— —— .~ (cos 2t
_ dr{ } 2+Jeos 2t d.'( ]

cos 2t

T
) sin’ 1 X
3Jeos 2t -sin® feost————— (=2sin 2t
_ 2Jcos 2t ( )

cos 2t
~ 3cos2¢sin’ feost 4+ sin’ £sin 2¢
cos 2t/ cos 2t

dy _d cos’ ¢t
Jcos 2t

dr dr
u'coszf,%(cus‘ .r}—-.:{!u:v.1 t- %(«.n'cos 21)

cos 2t

d | o
Jeos2t.3cos’ t—(cost)—cos’ t.—————(cos 2t
_ df{ ) 2+Jcos 2f ﬂ'f( )

cos 2t

\ . | .
3Jeos2r.cos’ t(—sint)—cos® 1+ ———u (—25sin 2¢
_ [ } 2ajcos 2t [ }

cos 2t
_ —3cos2t.cos’ t.sinf +cos’ £5in 2

- Ccos2f-+/cos 21
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cy
cdy _\dr ) =3c0s2t.cos” t.sint +cos’ £sin 2

"y [dx] 3cos 2t sin’ 1 cost +sin’ 1sin 2
i

~3cos2t.cos’ 1.sint +cos’ 1{2sint cost)

3cos2isin’ fcost +sin’ t(2sinf cost)

Sind cosf [—3[}05 2¢.cost + 2 cos’ f]

sin cnsr[i’rms 2¢sint + 2sin” r]
[—3(2::{}5: t—1)cost +2cos’ :] cos 2 = (2cos’ £ -1),

[B[I—Esinzr]sin.r+25i|13r} cos 2 ={1—25in3:)

~ —dceos’ 1 +3cost
3sins —4sin’ 7

 —cos3 cos 3 = 4cos’ 1 —3cost,
sin 3t sin 3t = 3sin¢ —4sin’ ¢
=—cot3

Question 8:
If x and y are connected parametrically by the equation, without eliminating the

v
parameter, find 4
dx

x :a[cosrﬂﬁgtané], Vv=asint

Answer

I .
The given equations are x = u(cosfﬂcgtang] and y = asint
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v d i i
Then, ™ =a-| < (cost)+ | logtan -
dr i af 2
. 1 d !
=q|—sinf+ I'F tan;
tan ! 2
L 2
[ t .t dt
=q| —§inf 4 cot—-se¢” —-
| 2 2 a2
- o
. cos | 1
=g —sinf+ = ®—
. 20 2
sin cos
L 2 2
. 1
=g|—sinf+——
N i i i
2sin—cos
L 2 2
( . |
=d| —85INf+——
| sin/
(—sinz.rHW
= -
% s A
cos’
={d—
sint
v d .
Y — a“ (sint) = acost
dt clt
(A‘f} b
ey [(P?J QaCost sint
: = = = =tans

Tdv [a’x] N acos".r ~ cost
dr sin{

Question 9:

If x and y are connected parametrically by the equation, without eliminating the

dy
parameter, find —

dx

x=asecfl, y=bhtan(
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Answer

The given equations are x=asect and y = htan @

dx d
Then, — =a-——(secd) =asecdtand
de? dd

. d .
i=b-—(temﬂ)=bwc'ﬂ
e dd
[0
.‘.ﬂﬁr: 46, _ bsec & =bsec6mt€= bc-ost? =b~.\- .I =bmsec€
ddx (er asecétand a acosfsmf a snd  a
L dé
Question 10:

If x and y are connected parametrically by the equation, without eliminating the

il
x ]

parameter, find

x=a(cosf+0sind), y=a(sin@—Hcosd)

Answer
The given equations are x = a(cosf+@sind) and y = a(sin @ — 6@ cosd)

Then, L a[i cos +i{ﬂ sin t’)}} = f{—sin{) + ﬂi[sin 0)+sind i({?]}
fele) de e de dé
= a[—sin@+@cosd +sind| = allcos @
Y _ u{i{simﬂ}—i[ﬂcosﬁ')} =a cos&—{ﬂi[cosé‘]+c05€~i{€}}
dd de dd dd df
=alcos@ +0sin@ - cos 0]
=al)sind

tan &

[d{)J _afsing _
{dx ] atl cos
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Question 11:
x=ya" ', y=ya™ ' show that %:—l
If ‘ o

Answer

P -l

The given equations are x =va™ ' and y =+va™ '
I'—' I' 2
x . _'ulu‘ll'l [ and -1.’ . acﬂ‘: i

:}I:(Gsin r); Hndy:(ﬂ{m r)‘ll

1. 1 1
sm o ons

—x=a’ and v = a’

sin”

Consider x = a’
Taking logarithm on both the sides. we obtain

1,
lugr:;sm toga

: ]-fk— : lo a-d(ﬁin']:‘}
a2 g\

:}E=£]Uga- :
dt 2 N
de  xloga
&t 217

L
cos

Then, consider y = a”
Taking logarithm on both the sides. we obtain

P
lﬂg}’=5CGS floga

: —I-Q—llo a~i{cos ':)
Ty ode 2 B

Qaj;_yluga{ -1 W
dt 2 Jl=f J

dy  —vloga
g —
dr 21—
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[ | [—Hﬂg__a]
ﬂ_ dfz_\-\ll— _ ¥y

-fﬁ'_[(h | ( r[uga A Jfr
\dt ) -\Qx.'ll]—i':J

Hence, proved.

Page 102 of 144



Class XII Chapter 5 - Continuity and Differentiability

Maths

Find the second order derivatives of the function.

+3x+2

Answer

Let y=x"+3x+2

Then,

dv d; . d d

= = [ — (3 —(2)=2x+3+0=2x+3
dx cb:(x ]+|:.|'.r{ Jt’]-lhf.l"-:(} re .
~‘F:J"=ij -9 (5 iqzﬂ y =2
U d? dx{_x-iﬂ) (fx{_x)-i-dx{‘] 2H0=2

Find the second order derivatives of the function.

200

X

Answer

Let y=x"

Then,

f_’ﬁ" — i{_‘r]“ ) — zﬂx'l‘}

dv dx

ﬂ — i(’_’{]x'“] — ’_ﬂui{x"‘) —20-19-x'® = 380x"
vy dx

Find the second order derivatives of the function.
X-CO5X
Answer

Let y=x-cosx
Then,
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vy d { i . .
% = ;—A(J - COS _r} =CO5X ~i{x}+x i{cus Jr} =cosx-l+x(—sinx)=cosx—xsinx

:;’1 _ {;—i[CUS X __X'Siﬂ_t] = ;_i{cus x)—%(.&' 5in 1-]

. . d d ..
——smx—[smA ~E{A]+x-£(smx}}

= —sinx—(sinx+.xcosx)

=—(xcosx+2sinx)

Find the second order derivatives of the function.
log x

Answer

Let y=logx
Then,

@ = i[lﬂg_‘(} :l
dr dv x

A

.ﬁ_i(!‘_—l
et delx J x*

Find the second order derivatives of the function.
v log x
Answer

Let y=x"logx
Then,
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Y i 3 d 3 L4 d
%:E[f ]ugx] = Ingx-a(x" }+ X 'E[h‘g-‘f)

-l ] 7 2
=logx-3x" 4+ x - —=logx-3x" +x°
X

=x"(1+3logx)
dy _dr,
u’x_‘? =% I:x' (1 +3lngx]i|

=(1+3logx) -%{x" } +x° %{I +3logx)

={1+3In::gx}-2x+.r3~i
X

=2x+6xlogx+3x
=5x+6xlogx
=x(5+6logx)

Question 6:
Find the second order derivatives of the function.
" sinSx

Answer
Let y=¢"sin3x

dy = d‘ (ET 5in S.T) =sin5x-

a-'x A d [E‘)+e' d (sin5x)

dx dx

_ : { .
=sin3x-e" +¢° -{:usﬁx-:i—(ix] =¢"sinSx+e" cos5x-5
b
=" (sin5x + 5cos5x)
d’y _d :
== e (sinSx + 5cos 5x
dx” dx[ ( }]

=(sin51+Scnsix}-;(e‘he” ';i(SiHSI-I-ECOﬂiI}

=(sin35x+5cos5x)e’ +e* [cos Sx- £{51}+5 (—sin5x)- %{‘h]}

=e"(sin 5x+ 5c0s5x)+e" (5c0s 5x - 25sin 5x)

Then, =e"(10cos5x — 24sin5x) = 2¢" (5cos 5x —12sin 5x)
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Question 7:
Find the second order derivatives of the function.

" cos3x

Answer

Let y=¢" cos3x

Then,
j'; :x[t’“-cas.’ix) cos.’ix-;(eh]+et’”.;(ms_ﬁx]
cos3x-e™ -%{ﬁx] +e" - (—sin3x)- %[h)
6e™ cos3x —3e™ sin3x (1)
':;T'" = :; (6e" cos3x —3e* sin3x) =6- ;: (e° cos3x)-3- ;; (e sin3x)
=6-[ 6¢*" cos3x—3¢* sin3x |3 sin 3x-%(e'**‘)+e"*‘ -%{sin.’!x] | [ Using (1) ]

36e™ cos3x—18e™ sin3x — 3[5i|‘] 3x-e™6+e" - cos 3,\'-3]

fix

36e™ cos3x — 18¢™ sin 3x — 18¢™ sin 3x — 9™ cos 3y

27¢" cos3x — 36" sin 3x
= 0™ {3 cos3x —4sin 3.‘:)

Question 8:
Find the second order derivatives of the function.

tan” x

Answer

Let y=tan ' x

Then,
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»od 1

Y _ —(tan ' x) = .

dv  dx 1+x

ATRE IR

& dell+x ) d

-1 —2x
w2y =

(I+Jc:]2 (I+J:3)2

Question 9:
Find the second order derivatives of the function.

log(log x)

Answer

Let v =log(logx)

Then,

dv d I d

e E[Iog(log ¥)]|= @+E{Io x)=———=(xlogx)
dy d

[xlngx] o
-1 1| =(l+logx
= ,.[lﬂg.r I+x-—}=—{ gﬁ}

[xlngl X [x]ogx}'
Question 10:
Find the second order derivatives of the function.
sin(log x)
Answer

Let y =sin(logx)
Then,
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A loax)] - A 1oux) = o5 (logx)
0 (ix[sm{lo‘g;&.}] cos(logx) ISIET{Im@,x]

. d’y _ d | cos(logx)
U dx x

X %[ms{log.‘;}] —cos(log x)- % (x)

x°

X [—sin (log x)- : (log r}] —cos(logx).1
X

e

~xsin(log r}l ~cos(log x)
x

X

—[sin{]ng x) + cos(log 'c]]

A

Question 11:

»

d ‘T +yv=10
dx”

If y = 5cosx—3sin x, prove that

Answer

It is given that, ¥ = 5cos x—3sin x
Then,
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ji. - i(ﬁcuax} ;i (3sinx)=5 ;L (cosx)-3 :t (sinx)

=5(-sinx)—3cosx =—(5sinx+3cosx)

dyv d .
So——=—| —[5sinx+3cosx
dv* u’xl: (Ssinx A]ZI
=_[5-;—i(5inx]+3-%{msx]}
~| 5cosx+3(-sinx) |
= —[5cosx—3sinx]
_—J:
,-_£+}-‘—U
™

Hence, proved.

d*y

If y=cos™ x, find e in terms of y alone.

Answer

It is given that, y=cos ™' x
Then,
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u'r}’z d (cns'lx}= 'L: =_(|—.'|::]_2I

= = - A1)

V=008 X=X =C0sy
Putting x = cos ¥ in equation (1), we obtain

d’y  -—cosy
dy’ [ 5
4,11'[] —cos’ y)
d’y  —cosy
=5 b4 -
* J(sinzy)'
_ —Cosy
sin’ y
_Ceosy |
siny  sin y
d'y . -
= 2 = —cot y-cosec” )
Question 13:

If y =3cos(logx)+4sin(log x), show that x*y, +xy, +y=0

Answer

It is given that, y = 3cos(log x)+4sin(logx)
Then,
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dr- dr .
» —j-E_ cos{logxﬂ—ﬂ-Efsm{legrﬂ

=3-| —sin{logx i logx) |+4-| cos{logx i log x
dx dx

3sin(logx) 4cos(logx) 4cos(logx)-3sin(logx)
+

LW
x x x
o d (41;05[]03{1]—35511 [:]ugx]\
o di | X J
x{4ms[]ugx} 3sin []ngx}}' {4ct15{|0gx] Ss;in(logx]}{xr
o
x xil{c,lavs(]4::5_{.1'}}I .?t{sin(lu::rg,x}}r {4cos(logx)-3sin(logx)}.1
x{—dfsin(lng x].{logx}I—3ces[logx].{lngx}l-‘—4cos{]egx}+35in(log x)
— =
x|: 4sin(logx). ] iccxs(lngr]_] 4cos(logx)+3sin(log x)
x x|
o
~ —4sin(logx)-3cos(logx)—4cos(logx)+3sin(logx)
= o
~ —sin(log x)—7cos(logx)
- x.1.
Xy, Y
& I, J A T - A
:xlt mn(lc}gx} ﬂ?mh(lugx} +xL4Lm(|0gx] 3sin (Iogx] —ECDs[log x‘]+4sin[log r]
= ) . )

= —sin(logx)—7 cos(log x)+ 4 cos(log x) - 3sin (log x )+ 3 cos(log x) + 4sin (log x)
=0

Hence, proved.

Question 14:

»

. . dy dy
If y = Ae¢™ + Be™, show that ——(m+n +mny =10
) Sz ~(man)—
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Answer

Ry

It is given that, y = 4e™ + Be

Then,
b _y. i{e"“ )+B- i(f’“) = A-e"”.i(nvf} +B-e™ ~i(n_'c} = Ame™ + Bne™
dx dx dlx dx dx
dz.}’ — d ?n'.llJ.' }r].l. _ d ?N.II. d ?rJ.T
E_E[dm + Bne )_fim-a(a )+Bn-£(a )
T ﬂr WX d 2 T 2 Rr
= Am-e™ —(mx)+ Bn-e™ -—(nx) = Am’e™ + Bn'e
clx X
Ljf— (m+ n}£+ mny
e dlx

= Am’e™ + Bn'e™ —(m + n] : [Amr—.r"“ + Bre™ ] | mn(fie"” + Be"”]
= Am’e™ + Br'e"™ — Am’e"™ — Bmne™ — Amne™ — Bn'e™ + Amne™ + Bmne™
=0

Hence, proved.

Question 15:

Tr - d'y
If y = 500e™ + 600¢ ™, show that o 49y

Answer

It is given that, y = 500e’" + 600¢ ™"
Then,
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DB _ 500, (7 4 (g
(ﬁ_-suu,m_(g }+ﬁuu,ﬂ(¢ )

=500-¢" -i{?x]+6{]{]~e " ~i(—7x)
dx dr
=3500e™ —4200e
d’y

aeon. 4 (s d(
5 =3500-——(e™) - 4200.—(e )

- 7 d S
=3500-¢" . —(Tx)—4200.¢ " . —(=7:
¢ (7x) e dx{ x)

dx
=7x%3500-¢" +7x4200-¢
= 49%500e™ +49x 600e "
= 49(500¢™ +600e 7 )
=49y

Hence, proved.

If ¢’ (x+1) =1, show that d’y ufv]"
e'(x =1, show that —=| —

ae” o
Answer

The given relationship is ¢"(x+1) =1
e'(x+1)=1

= e’ = 1
x+1

Taking logarithm on both the sides, we obtain

y=log

]
{JH—I}

Differentiating this relationship with respect to x, we obtain
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d’y [ -1 T
= —=| —
det \x+1

d’y [ dy T
= — =
dx” ot

Hence, proved.

Question 17:

If y =(tan "' x}z, show that (x: + l}J ¥, + Ix(x: +l}yI =2

Answer

The given relationship is v = (tan" x]_
Then,

¥, =2tan"’ x%[tmr' x)

=y, =2tan"' x. :
+x°

= (1+x*)y, = 2tan "' x
Again differentiating with respect to x on both the sides. we obtain

{I+Jr2]_1»'1 +2xy, = 2[l+lxz J

:>{|+.1'2]2_}'] +2.r{|+xj}_vl =2

Hence, proved.
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Verify Rolle’s Theorem for the function f(x)=x"+2x—8 ,x € [-4.2]

Answer

The given function, f(x)=x"+2x—8, being a polynomial function, is continuous in [—4,
2] and is differentiable in (-4, 2).
f(-4)=(-4) +2x(-4)-8=16-8-8=0

2

F(2)=(2) +2x2-8=4+4-8=0

Zf(-4)=f(@)=0

= The value of f (x) at =4 and 2 coincides.

Rolle’s Theorem states that there is a point ¢ € (—4, 2) such that f'(¢)=0

f[x}:r +2x-8§
(x)=2
'._f'{c}:ﬂ
=2c+2=10
=c=-1, wherec=-1¢e(-4,2

Hence, Rolle’s Theorem is verified for the given function.
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Examine if Rolle’s Theorem is applicable to any of the following functions. Can you say

some thing about the converse of Rolle’s Theorem from these examples?

(i) f(x)=[x] forxe[5, 9]
(i) f(x)=[x] forxe[-2, 2]
(i) f(x)=x"=1forxe[l, 2]

Answer
By Rolle’s Theorem, for a function_;":[a. b] =R, if
(a) fis continuous on [a, b]

(b) fis differentiable on (a, b)
(c) f(a) =f(b)

then, there exists some c € (a, b) such that /'(c)=0

Therefore, Rolle’s Theorem is not applicable to those functions that do not satisfy any of

the three conditions of the hypothesis.
(i) f(x)=[x] forxe[5, 9]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5and x =9

= f (x) is not continuous in [5, 9].

Also, f(5)=[5]=5and f(9)=[9] =9
F(5)=7(9)
The differentiability of fin (5, 9) is checked as follows.
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Let n be an integer such that n € (5, 9).

The left hand limit of " at x = n is.
(n+h)— +/ -
()= () [ne k] T

= lim =lim—=w
=l h h—ll h- =) Ill!' Jr—il Iﬁ

The right hand limit nl'j" alx =n is,

. f(n+h)-f [n+h] In] ! lim 0= 0

fr—s ¥ h J| -IJ .l- .-:l h h—)

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s

Theorem.

Hence, Rolle’s Theorem is not applicable for [ [1‘ [':.] for x F[S. ()]
(i) f(x)=[x] forxe[-2, 2]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = =2 and x = 2

= f (x) is not continuous in [-2, 2].

Also, _}"{—3'] =l— ] 2 and f(2 }
“f(-2)=1(2)
The differentiability of fin (=2, 2) is checked as follows.

2]-2
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Let n be an integer such that n € (-2, 2).

The left hand limit of " at x = n is.

\n+h)— +h|-
S (n+h)—f(n) i [+ 0] -] _
h
The right hand limit of /" at x = n is,

lim

=l h—ll 1 =)

. __:"{n+h}—_,"'{n}: e [12+ h]—[n] .

h

fa—sdl h—li’ f—i)

n=1=-n =1
= lim =0

Ill!' Fr—sil Iﬁ

R im0=0

1 f—l)

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~fis not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle’s

Theorem.

Hence, Rolle’s Theorem is not applicable for f{.\.‘}:[r] forx e [—2, 2].

(i) f(x)=x"-1forxe[l, 2]

It is evident that f, being a polynomial function, is continuous in [1, 2] and is

differentiable in (1, 2).
£()=(1)-1=0
1(2)=(2) -1=3

AF(1) # F(2)

It is observed that f does not satisfy a condition of the hypothesis of Rolle’s Theorem.
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Hence, Rolle’s Theorem is not applicable for f{.r] =x" —1forx r:[], 2].

If _f':[—fr.fr]—} R is a differentiable function and if f'(x)does not vanish anywhere, then

prove that /(—3)# f(5).

Answer

It is given that / :[-5.5] = R is a differentiable function.

Since every differentiable function is a continuous function, we obtain
(a) fis continuous on [-5, 5].

(b) fis differentiable on (-5, 5).

Therefore, by the Mean Value Theorem, there exists c € (-5, 5) such that

=146

=10f"(c)= f(5)- f(-5)

It is also given that /”(x) does not vanish anywhere.
S (€)% 0

=10f"(c)#0

= f(5)-f(-5)=0

= f(5)= f(-5)

Hence, proved.

Verify Mean Value Theorem, if fl[.r] =x" —4x-3in the interval [u, b], where

a=1and h=4
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Answer

The given function is j'l[.\’] =x' —4x-3
f, being a polynomial function, is continuous in [1, 4] and is differentiable in (1, 4)

whose derivative is 2x — 4.
F()=1-4x1-3==6, f(4)=4"-4x4-3=-3
S(B)=1(a) _F(4)-1() _-3-(-6)

3
i
b—ua 4-1 3 3

Mean Value Theorem states that there is a point ¢ € (1, 4) such that _f"{r] =1

f'(e)=1

= 2c—4=1

o= 1 where ¢ =£€:(1- 4)
2 2 '

Hence, Mean Value Theorem is verified for the given function.

Verify Mean Value Theorem, if ,,r"{.r}= x' —5x" =3x in the interval [a, b], where a = 1 and

b = 3. Find all ¢€(1,3) for which f'(c)=0

Answer

The given function fis /' (x)=x"—5x" - 3x
f, being a polynomial function, is continuous in [1, 3] and is differentiable in (1, 3)
whose derivative is 3x*> — 10x — 3.

F(1)=1=5x1"=3x1=-7, f(3)=3"-5x3"-3x3=-27

SO S@_ S-S0 21-(T)

bh—a i-1 3-1

0
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Mean Value Theorem states that there exist a point ¢ € (1, 3) such that _I"{_r} =-10

f'le)=-10

=3¢" =10c-3=10
=3¢’ —10c+7=0
=3¢’ -3c-Te+7=0
=3c(c-1)-T(c-1)=0
= (c=1)(3c-7)=0

;");_“: L I,“""IET':C:EF{I- 3]
3 3

7
Hence, Mean Value Theorem is verified for the given function and «¢ =?E(]. 3) is the

only point for which f'(¢)=0

Examine the applicability of Mean Value Theorem for all three functions given in the
above exercise 2.

Answer

Mean Value Theorem states that for a function _f':[a. b] — R, if
(a) fis continuous on [a, b]
(b) fis differentiable on (a, b)

_ f(b)-1f(a)

then, there exists some c € (a, b) such that f‘{ﬁ‘) b
—

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy

any of the two conditions of the hypothesis.
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(i) f(x)=[x] forxe[5, 9]

It is evident that the given function f (x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5and x =9

= f (x) is not continuous in [5, 9].

The differentiability of fin (5, 9) is checked as follows.

Let n be an integer such that n € (5, 9).

The left hand limit of " at x = n is.

) fn+h)—f(n) . [n+h]-[#] . n_ -1 .
fr—ell h f—ll h- fp—il Ill!' Fr—sil Iﬁ

The right hand limit nl'j" alx =n is,

e f{n+h} [rz+h] In] -n_ lim 0 =0

fr—s ¥ h J| -IJ .l- .-:l h h—)

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~f is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value

Theorem.

Hence, Mean Value Theorem is not applicable for ,r‘ [1] for x F[S. ()]

(i) f ['L] for rr[ -2, 2]

It is evident that the given function f (x) is not continuous at every integral point.
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In particular, f(x) is not continuous at x = =2 and x = 2

= f (x) is not continuous in [-2, 2].

The differentiability of fin (=2, 2) is checked as follows.

Let n be an integer such that n € (-2, 2).

The left hand limit of " at x = n is.
j[r.l+.l’r] f{r.l [r.'+h] [#] n=l=-n_ . =l

= lim =lim —=m
|"—'+I:' h PJ—H.I h' iy =il IIl'L[ Fr—il Iﬁ

The right hand limit nl'j" alxy =nis,

o f{n+h} [rz+h] Irz] -n_ lim 0=0

By h J| .n .l- .-:l h bl

Since the left and right hand limits of f at x = n are not equal, f is not differentiable at x

=n

~fis not differentiable in (-2, 2).

It is observed that f does not satisfy all the conditions of the hypothesis of Mean Value

Theorem.

Hence, Mean Value Theorem is not applicable for f(x)=[x] forxe[-2, 2].

(i) f(x)=x"-1forxe[l, 2]

It is evident that f, being a polynomial function, is continuous in [1, 2] and is
differentiable in (1, 2).

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.
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Hence, Mean Value Theorem is applicable for f(x)=x" -1 forx e[l, 2].
It can be proved as follows.

f'{lj:l’-l:ﬂ f(2)=2"-1=3

| f{!:—} f(a) _£(2)=r(1) _3-0_,
—a 2-1 1
_,r’"{_'r} =2x
'(c)=3
=2¢=3

:>{.'=§:l.:'1, where I.5E[l,2]
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Miscellaneous Solutions

Question 1:
(3x° -9x+5)
Answer

. a
Lety =(3x" —9x+5)

Using chain rule, we obtain

b _d

o (3x* -9x+5)’

=27(3x* ~9x +5) (2x-3)

Question 2:

sin” x +cos” x
Answer

Let y =sin’ x+cos” x
Ly d

e E[sin3 x]+%(cos“ x}

= 3sin’ x-%(sinx}+ﬁcoss x- i{u::r:-SJc}
=3sin” x-cosx +6c0s” x-(—sinx)

= 3sin xmsx[sinx— 2cos’ x]

Question 3:
{Sx}ﬁulmix

Answer
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Jeosly

Lety =(5x)
Taking logarithm on both the sides, we obtain
log v =3cos2xlog5x

Differentiating both sides with respect to x, we obtain

lﬁz_;\}ngjx-i[cns Zx}+cns 21‘-i{lﬂg5x]
_.!'! {fx dx d"" =
dy I d L d
= —=3y| log5x(-sin2x)-—(2x)+cos2x-— —(5x
de | g { ) dx{ ] S5x ci\:{ }}
— d_1 =3y| -2sin2xlogSx+ UUSEI}
dx L X
, 3 2
_}ﬂ:}) 2C05 £X ﬁsinlxlngﬁx:|
dx L X
'_ﬂ={5x}m'_ \ftt‘r?— T—ﬁ-S]ﬂlengx
dx x -

sin”' (I x,:} 0=x=<1

Answer
Let y =sin™' (.r -..'{;}

Using chain rule, we obtain
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cos
2

J2x+7

-2<x<2

Answer
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X
cos 5
Lety= =
N2x+7

By quotient rule, we obtain
d _ J2x+7 i[cus“' ;]—(C{JS_I ;]i(«f21+?)
a (Vax+7)

~1 dx o X | d
J2x+ . - ! 2x+
2x+7 [2] [CCIS J 5 ,—2 7 . 3 [_.‘E ?J

\aﬁx[lsu?) (14'21+?)[2:r+?}

cos ' ¥
B 3

1
=— + =
Vi =x*2x+7 {2x+‘|,|');_>

Question 6:

| 1+sinx ++/1-sinm
cot B
\I'r|+$i]'l_1£‘ - y"ll-sinx

Answer
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| V1 sinx +1—sinx
Lety =cot™ | Y—= “: , (1)
»,"'I+sm.r—yl—smx

Then JI+sinx ++/1-sinx

\rr]+s{nx —Jl=-sinx

~ [\r'l+sin,t +\!"|—Sinx]2
- (Vi sinx = 1=sinx ) (V1+sinx + 1= sinx)

_ (1+sinx)+(1-sin x}+2J[1 —sinx)(1+sinx)

(14 sinx)—(1-sinx)

. 3
~ 2+24l1-sin" x
2s5inx
_I+msx

sinx

2cos’

b | =

. X X
2sin = cos
2 2

X
=cot
2

Therefore, equation (1) becomes

¥ = cot '[cotf]
2

X
= ¥V=_
-2
S _1d
v 2 dx
_a_1
de 2

Question 7:
(log x}'““ x>l
Answer

Lety =(log x}k'y
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Taking logarithm on both the sides, we obtain
log y = log x-log(log x)
Differentiating both sides with respect to x, we obtain

o
s ﬂrI[I{:—g.nr logl:logx]]

1 dy i i
= ——=log(lo —(log x)+logx-—| log(log
as ¢(logx).—-(log x)+log x er g(logx) |

= ji :_v[lug[lug_r}.i Flog x Io:;,r - ;i(lugx]}
dy 1 |
= —=y|—log(logx)+—
dx ! L: g[ . r) x}
dy lagx 1 Iog{]ﬁg ..'l.'}
S = log —_—y— =
dx [ o8 r} [r X

Question 8:

cos(acosx+bsinx), for some constant a and b.
Answer

Let y = cos(acos x+bsinx)

By using chain rule, we obtain

@ =—cos(acosx+bsin x)

de  dx

=Y _ _in (ac::rsx+bsinx}-i[acosx+bsinx]
v dx

=—sin {acasx+hsinx}-[u[—sin x}+bcosx]

=(asin x —bcos x)-sin (acos x +bsin x)

Question 9:
. [sinx-cosx) o 3]"[
(sinx—cosx) :

Answer
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. [=inx—eosx)
Let y =(sinx—cosx)

Taking logarithm on both the sides, we obtain

log y = Iog[{sin x—cosx )™ J}

= log y =(sin x— cosx)- log(sin x —cos x)
Differentiating both sides with respect to x, we obtain

ldy_d (sinx —cosx)log(sin x —cos T}:I

ydv dx
= ; % = ]cg(sin X —Ccos x] -%(sinx _cns_!.‘} +(5iu X —COos x} '%lug{sinr _ cnsx}
= ldy _ log (sin x —cos x ) -(cos.x +sin x ) +(sin x — cos r};
y dx . (sin X —Cos .T]
:;,% _ [sin.t—cos,r]‘““”‘“”“'”[(ms-"+5i“'f)'lﬂg(5in x—cosx)+(cosx +sin 1)]
Gy
;i = (sinx—cosx)™ " (cos x +sin x)[1+log(sin x —cosx) |
X

Question 10:

X

x"+x"+a"+a" for some fixed a >0 and x>0
Answer
Lety=x"+x"+a +a"
Also, letx" =u. x" =v. @' =w, anda” =5
LVSUHHVEWES
. dy _ du . dv . dw N s
de  dy dv ode dx
H=x
= logu = log x”
= logu = xlog x

Differentiating both sides with respect to x, we obtain

-%{sinx— cos x)
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| du e i
=logx- x)+x- log x
i dx 8 dx{ ) dx( 2x)
du 1
= —=u|logx-1+x-—
el x
dn .
==X [logx+1]=x"(1+logx) -(2)
e
¥ = Irc.'
av d
S = —I[x‘ )
dv  dx
= dv =ax" [3]
dx
W=

= logw=loga"
= logw=xloga

Differentiating both sides with respect to x, we obtain

dw
= —=wloga

ol
:%—u”logu ..(4)
s=a°

Since a is constant, a° is also a constant.

ds
— =0 5
. dx (5)

From (1), (2), (3), (4), and (5), we obtain
dy

- =x"(I+logx)+ax"" +a"loga+0
[

=x"(1+logx)+ax™" +a"loga
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g (x —3]'1- , for x=3

Answer

Lety=x"" + (x-3 }T:

Also, let u = P andv= (x—?r}f

SLV=u+v

Differentiating both sides with respect to x, we obtain

b _du_iv )

ade  dr o o

y=x""
]Gguzlﬂg(x‘: ")
logu = (x° —S]Iogx

Differentiating with respect to x, we obtain

1 du d ;5 3 _d
;-E—Ingx-a{x —3]+(.T —3} —dr(]ugx}

1 du T
:tsEE:Ifng-Qx+{x' —,}J-

du oa | Xt =3
=—=x"" +2xlogx

dx x

| =

Also,

V= [x—B}v:

Slogy = Ir:rg(.r—:i]r:
= logv=x"log(x-3)

Differentiating both sides with respect to x, we obtain
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I_.ﬂ: |ng(x—3}-%(.‘rg)+xj -%[Ing(r—ﬂ]

v odx
1 dv A |
=——=] —3)2x+x ———(x-3
v dx og[x ) e x=3 dx(x }
dav x
= —=v|2xl -3)+ -1
dr v[ rug(x } ¥=3 }

:’ﬂz{x—‘a‘]-\'! li_pjxlng[.‘f—”J

Substituting the expressions of d—uand? in equation (1), we obtain

ddx by

f\: =y {x-x_} +2,r10gx]+(x -3)" |:xx_-3 +2xlog(x— 3}}

Question 12:

Find % if y=12(1-cost),x= IU{I—sim}*—g <1 {%
Answer

It is given that, y =12(1-cost),x = 10(r —sin¢)

% = %[I{}{r—sinfﬂ=I{J~%{r—sinr]=lﬂ{l—msr]

%:%[Iz{l—cuw]]z 12-%{1 ~cost)=12-[0—(=sinr)|=12sin¢

[@] 12-2sin--cos -
cdv \dr 12sin¢ A0S g
— = - = = = =—g0f—

dx (ﬁj_m(]'m“)_ 10-2sin® - 5 2
ot

Question 13:

Find —, if y=sin"'x+sinyl-x7, —~12x=]

de’

Answer
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It is given that, y =sin ' x+sin '1-x’

. E—i[sin 'y +sin I\}'|—I?:|

Tde dx
::-%:%(sin 'x]+;—i(sin '\H—xz)
dy | | el S
R e :;(“")
- .Jl—(u"l—x:)
dp 11 1 ‘i(““')
de  J1—x® x 21—y dx
&1 I
= == + -2x
dx "."[]—x: El\fr]—x:( }
dy !
dx  \J1-x* 1—x*
@ _y
dx
Question 14:

If vy /l+ v+ 3/l+x =0, for, =1 < x <1, prove that
dy 1
de (1+x)

Answer

It is given that,
I+ y+ydl+x=0
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= xfl+y=—/l+x
Squaring both sides, we obtain
¥ (1+y) =y (1+)
= +x’y=y +x’
= xt -y =xp' —xly
=x =y =x(y-x)
= (x+y)(x—y)=xv(y—x)
LX+y=—xy
:‘>{l+ x] y=—x

=X

(I-i—x]

Differentiating both sides with respect to x, we obtain

:':;J.l‘:

T
ﬁfy__(]"'x}%(x)_x%{”x}__[l+.~c]—x 1

dx (1+x) T N E;

Hence, proved.

Question 15:

If {.T _a}: *{J-'—-!‘J}: =L‘:, for some ¢ =), prove that

(2]

Iz is a constant independent ofa and b
ay

dx”

Answer

It is given that, (x—a) +(y—b) =¢’

Differentiating both sides with respect to x, we obtain

Page 136 of 144



Maths

Class XII Chapter 5 - Continuity and Differentiability
m’[ 3:| o |: :i| d ;s
x—a) |+ v—h) |= e
dx [ } dx ( ) dx { )
o

= Z{x—a}-i“(x—u]+2(_v—

=2(x-a)-1+2(y-5)- L =0
X

dy  —(x-a)
= ()
&y _d[~(x-a)
Cde de| o y—b
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|00 S ) (-a) S (-8)
) (v-b)
oD
) (v-b)
(-n)-t-ap{ "0
=— (J;—h)z [Using (l}]
_ _{y—h}:+[.r‘—a}:]
(y=b)

vy ‘ +{.‘E—a]z 3 (},-_bf_l_{x_a}::r
T e [
2 _[(f—b)"ﬂx—a}’} _{{y—b)“m_a]‘]

. (v-b) (v-b)
iu—h}f] (-t
C(v-b)  (y-b)

= —¢, which is constant and is independent of o and A

Hence, proved.

Question 16:

cos’ (a+y)

If cos y=xcos|a+ v), with #=tl, hat /.= :
) (a+ y), with cosa # £1, prove that e Sing

Answer
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It is given that. cosy = xcos(a+y)

d o
o cos y| = E[xccrs(cu y}]

- _sjny%=m5{a+}:}-%{x]+x-%[ms[a+.}'”
X

}

=» —sin yi = cosi{ﬂ+_v}+x-[—sin[u+ y}]%
X

= [xsin (a+ y}—sin_v]% =cos(a+y) (1)
- CQS}J

Since cos y=xcos(a+ v). x=
ince cos y = xcos(a+y), x cos(a+y)

Then, equation (1) reduces to

ﬂ.sin{a+}‘}—ﬁin y _ cos(a+y)
Cos{a+}r} ﬂr.":

= [cos; -sin(a+ y)—sin y-cos(a +_v}:|~ ;—‘P =cos” (a+y)
x

= 5in[a+_];—y]% =£:{:-53{a+h]

dy cos’ {a + h]
dv  sina

Hence, proved.

Question 17:

d*y
dx’

If x =a(cost+1sint) and y = a(sin7—rcost), find

Answer
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It is given that, x = a(cosf +rsint) and y = a(sinf —fcost)

dx o ;
S =a-—(cost +1sing)
dt dt
= a[—sinf +sin r-%{r]h* -%{sin r)j|
= a[-sint+sins +1cost] = at cost
dy

- =a-£{sinr—rms!}
f

dr
= alms:—{cosr—%{r}H-%[ms:]H

=a[cos:—{c05:—fsinr}] = aisint

()
cdv _\di ) _atsint _

v = tant
dx [d_‘f] af cost
dt
dy d(dv) d , ot
Then, &2 =% v —(tant) =sec’ 1-—
av dxl dy ) dx dx
) dlx dlt 1
=sec’ - — =qalcost = — =
ai cost dt dx arcost
sec”
= RIES) {E
at 2
Question 18:
1f £ (x) =|a]", show that f"(x)exists for all real x, and find it.
Answer
x, ifx=0
It is known that, |x|= .
—x, ifx=<0

Therefore, when x = 0, _,I'"{x}:|x|l =y

In this case, f’{x} =3x"and hence, f’{x} = bx

3

When x < 0, _,f'{x}:|x|] =[—x}] =—x
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In this case, f'(x)=-3x"and hence, f"(x)=—6x

Thus, for f'(x) :|.r1 , J"(x)exists for all real x and is given by,

f'"{} bx, ifx=0
x)=
: —bx, ifx<0

o

Using mathematical induction prove that E{J‘}z nx"" for all positive integers n.

Answer

To prove: P(n): %(x” ) =nx"" for all positive integers n
ax

~P(n) is true forn =1

Let P(k) is true for some positive integer k.
d .

Thatis, P(k):—(x" )= k"

() ()
It has to be proved that P(k + 1) is also true.
Consider d (x“'): d (x-x""]

dx dx

_x. (x)+x- d (x*) [By applying product rule]
ax dx

=x" 1+x-k-x"
:x.'- +kxﬁ
=(k+1)-x*
- {k + ] }_x|_.'|'+|.|-|
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Thus, P(k + 1) is true whenever P (k) is true.

Therefore, by the principle of mathematical induction, the statement P(n) is true for
every positive integer n.

Hence, proved.

Using the fact that sin (A + B) = sin A cos B + cos A sin B and the differentiation, obtain
the sum formula for cosines.

Answer
sin( A+ B)=sin Acos B +cos Asin B

Differentiating both sides with respect to x, we obtain

dr. d . . d .
. [sin(A+B)]= p (sin Acos B)+ i (cos Asin B)

d

= cos( A+ B)- .
Gx

(4+ B)=cosB- fi{sin A)+sin A- ;(ms B)

. d d . .
+sin B- i (cos A)+cos A e (sin B)

:*»ms{.-HB}-il[;HH} cos B-cos A% ¢ sin A(—sin 4!35]1ﬁ
dx dx dx
+sin B(—sin A)- U | cos Acos B
dx dx
= cos( A+ B)- d4 F aB =(cos Acos B—sin Asin B)- i ! aB
dy e dx |
s.cos( A+ B)=cos Acos B-sin Asin B
£(x) g(x) h(x) ) ) m()
ifv=| I m 1 |, prove that TL= { m "
a b ¢ o a b ¢

Answer
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y=| I m n
a b c
= y=(mc—nb) f(x)-(lc—na)g [ )+ (1b—ma)h(x)

Then,dx;:i_[[:nc—nb}f ]— [Ic na) ]+ [e’b ma)h(x)]
=(mc—nb) f'(x)~(le=na)g'(x)+(b- ma}h (.x

f'(x) g'(x) H(x)
= m 7
o b c
" f(x) g'(x) h(x)
Thus, & | m n
dx
e h ¢
Question 23:
d‘ ¥V E.TJV B
y— |:ILL‘\.T I_ = —.:{]
If y= ~1=x=1 showthat{ T]dx xdx a-y
Answer

Cios I x

It is given that, y=¢"
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Taking logarithm on both the sides, we obtain
log y=acos 'xloge
log v=acos ' x

Differentiating both sides with respect to x, we obtain

ldy -l

¥ dx NI

L
dx 1-x°

By squaring both the sides, we obtain

-2
de ) 1-x°
Z}{l—l’!][%]- =a'y’

(u_xz][%]' _

Again differentiating both sides with respect to x, we obtain

(%T %[I —x2]+(1—x3)><%[[%]2} - ﬂi%(l’z)

H : 1 E J 4
ﬁ[ﬁJ {—2x}+(l—x2)x QQd—“} =4::‘j'.2_-;.ﬂ
dx db

-

dx dx”

3[%] {—2x}+(1—x9)x2%.d:f :a:,z_};‘,ﬁ

e dx
2!‘ ¥
:—xﬂ+[l—x1)d—'}=al.y .0
e ah” dx
ndy dv
=\l-x")—5-x——-ay=0
{ ]dx dx d

Hence, proved.
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