Exercise 16.1

Question 1:

Find the values of the letters in the following and give reasons for the steps involved.

3 A
$+\quad 25$
B 2

Answer 1:

On putting $\mathrm{A}=1,2,3,4,5,6,7$ and so on and we get,
$7+5=12 \quad$ in which ones place is 2 .
$\therefore \quad \mathrm{A}=7$
And putting 2 and carry over 1, we get

$$
B=6
$$

Hence, $A=7$ and $B=6$

Question 2:

Find the values of the letters in the following and give reasons for the steps involved.

4 A
$+\quad 9 \quad 8$
$\mathrm{C} \quad \mathrm{B}$

$\tau_{\text {mai }}$ Answer 2:

On putting $\mathrm{A}=1,2,3,4,5,6,7$ and so on and we get, $8+5=13 \quad$ in which ones place is 3 .
$\therefore \quad \mathrm{A}=5$
And putting 3 and carry over 1, we get $\mathrm{B}=4$ and $\mathrm{C}=1$

Hence, $A=5, B=4$ and $C=1$

Question 3:

Find the values of the letters in the following and give reasons for the steps involved.

1 A
$\times \quad \mathrm{A}$
9 A

EAnswer 3:

On putting $A=1,2,3,4,5,6,7$ and so on and we get,
$A \times A=6 \times 6=36 \quad$ in which ones place is 6 .
$\therefore \quad A=6$
Hence, $A=6$

Question 4:

Find the values of the letters in the following and give reasons for the steps involved.

Eman Answer 4:

Here, we observe that $\mathrm{B}=5$ so that $7+5=12$.
Putting 2 at ones place and carry over 1 and $A=2$, we get

$$
2+3+1=6
$$

Hence, $A=2$ and $B=5$

Question 5:

Find the values of the letters in the following and give reasons for the steps involved.

A B
\times
\times
C
A

$E_{\text {nai }}$ Answer 5:

Here on putting $B=0$, we get $0 \times 3=0$.
And $A=5$, then $5 \times 3=15$
$\Rightarrow \quad \mathrm{A}=5$ and $\mathrm{C}=1$
Hence, $\mathrm{A}=5, \mathrm{~B}=0$ and $\mathrm{C}=1$

Question 6:

Find the values of the letters in the following and give reasons for the steps involved.

A
\times
\times
B

Answer 6:
On putting $B=0$, we get
$0 \times 5=0$ and $\mathrm{A}=5$, then $5 \times 5=25$
$\Rightarrow \quad A=5, C=2$
Hence, $A=5, B=0$ and $C=2$

Question 7:

Find the values of the letters in the following and give reasons for the steps involved.

A B
\times
$\times \quad 6$
B B B

EAnswer 7:

Here product of B and 6 must be same as ones place digit as B.
$6 \times 1=6,6 \times 2=12,6 \times 3=18,6 \times 4=24$
On putting $B=4$, we get the ones digit 4 and remaining two B 's value should be 44 .
$\therefore \quad$ For $6 \times 7=42+2=44$
Hence, $A=7$ and $B=4$

Question 8:

Find the values of the letters in the following and give reasons for the steps involved.

$$
\begin{array}{r}
\mathrm{A} 1 \\
+\quad 10 \\
\hline \mathrm{~B} 0
\end{array}
$$

Emini Answer 8:
On putting $B=9$, we get $\quad 9+1=10$
Putting 0 at ones place and carry over 1 , we get
For $\mathrm{A}=7$
$\Rightarrow \quad 7+1+1=9$
Hence, $A=7$ and $B=9$

Question 9:

Find the values of the letters in the following and give reasons for the steps involved.

$2 \mathrm{~A} B$
$+\mathrm{A} \quad \mathrm{B}$
B

Answer 9:
On putting $\mathrm{B}=7$,
$\Rightarrow \quad 7+1=8$
Now A $=4$, then $4+7=11$
Putting 1 at tens place and carry over 1 , we get $2+4+1=7$
Hence, $A=4$ and $B=7$

Question 10:

Find the values of the letters in the following and give reasons for the steps involved.

$$
\begin{array}{r}
12 \mathrm{~A} \\
+6 \mathrm{~A} \\
\hline \mathrm{~A} 09
\end{array}
$$

E Answer 10:
Putting $A=8$ and $B=1$, we get
$8+1=9$
Now again we add $2+8=10$
Tens place digit is ' 0 ' and carry over 1 .
Now $1+6+1=8=\mathrm{A}$
Hence, $\mathrm{A}=8$ and $\mathrm{B}=1$

Exercise 16.2

Question 1:

If $21 y 5$ is a multiple of 9 , where y is a digit, what is the value of y ?

$E_{\text {mix }}$ Answer 1:

Since $21 y 5$ is a multiple of 9 .
Therefore according to the divisibility rule of 9 , the sum of all the digits should be a multiple of 9 .
$\therefore \quad 2+1+y+5=8+y$
$\Rightarrow \quad 8+y=9$
$\Rightarrow \quad y=1$

Question 2:

If $31 z 5$ is a multiple of 9 , where z is a digit, what is the value of z ?
You will find that there are two answers for the last problem. Why is this so?

Answer 2:

Since $31 z 5$ is a multiple of 9 .
Therefore according to the divisibility rule of 9 , the sum of all the digits should be a multiple of 9 .
$\therefore \quad 3+1+z+5=9+z$
$\Rightarrow \quad 9+z=9$
$\Rightarrow \quad z=0$
If $\quad 3+1+z+5=9+z$
$\Rightarrow \quad 9+z=18$
$\Rightarrow \quad z=9$
Hence, 0 and 9 are two possible answers.

Question 3:

If $24 x$ is a multiple of 3 , where x is a digit, what is the value of x ?
(Since $24 x$ is a multiple of 3 , its sum of digits $6+x$ is a multiple of 3 ; so $6+x$ is one of these numbers: $0,3,6,9,12,15,18 \ldots$ But since x is a digit, it can only be that $6+x=6$ or 9 or 12 or 15 . Therefore, $x=0$ or 3 or 6 or 9 . Thus, x can have any of four different values.)

${ }^{6}$ Answer 3:

Since $24 x$ is a multiple of 3 .
Therefore according to the divisibility rule of 3 , the sum of all the digits should be a multiple of 3.

$$
\therefore \quad 2+4+x=6+x
$$

Since x is a digit.

$$
\begin{array}{llll}
\Rightarrow & 6+x=6 & \Rightarrow & x=0 \\
\Rightarrow & 6+x=9 & \Rightarrow & x=3 \\
\Rightarrow & 6+x=12 & \Rightarrow & x=6 \\
\Rightarrow & 6+x=15 & \Rightarrow & x=9
\end{array}
$$

Thus, x can have any of four different values.

Question 4:

If $31 z 5$ is a multiple of 3 , where z is a digit, what might be the values of z ?
${ }^{5}$ answer 4:
Since $31 z 5$ is a multiple of 3 .
Therefore according to the divisibility rule of 3 , the sum of all the digits should be a multiple of 3 .
Since z is a digit.
$\therefore \quad 3+1+z+5=9+z$
$\Rightarrow \quad 9+z=9 \quad \Rightarrow \quad z=0$
If $3+1+z+5=9+z$
$\Rightarrow \quad 9+z=12 \quad \Rightarrow \quad z=3$
If $3+1+z+5=9+z$
$\Rightarrow \quad 9+z=15 \quad \Rightarrow \quad z=6$
If $3+1+z+5=9+z$
$\Rightarrow \quad 9+z=18 \quad \Rightarrow \quad z=9$
Hence, $0,3,6$ and 9 are four possible answers.

