EXERCISE 4.1

1. The linear equation $2 x-5 y=7$ has
(a) a unique solution
(b) two solutions
(c) infinitely many solutions
(d) no solution.

Sol. $2 x-5 y=7$ is a linear equation in two variables. A linear equation in two variables has infinitely many solutions.
Hence, (c) is the correct answer.
2. The equation $2 x+5 y=7$ has a unique solution if x, y are:
(a) natural numbers
(b) positive real numbers
(c) real numbers
(d) rational numbers.

Sol. The equation $2 x+5 y=7$ has a unique solution if x, y are natural numbers. Hence, (a) is the correct answer.
3. If $(2,0)$ is a solution of the linear equation $2 x+3 y=k$, then the value of k is:
(a) 4
(b) 6
(c) 5
(d) 2

Sol. Substituting $x=2$ and $y=0$ in the given equation $2 x+3 y=k$, we get $2(2)+3(0)=k \Rightarrow k=4$
Therefore, the value of k is 4 .
Hence, (a) is the correct answer.
4. Any solution of the linear equation $2 x+0 y+9=0$ in two variables is of the form:
(a) $\left(-\frac{9}{2}, m\right)$
(b) $\left(n,-\frac{9}{2}\right)$
(c) $\left(0,-\frac{9}{2}\right)$
(d) $(-9,0)$

Sol. The given linear equation is $2 x+0 y+9=0 \Rightarrow 2 x=-9$

$$
\therefore \quad x=-\frac{9}{2}
$$

Since the coefficient of y is 0 in the given equation, the solution can be given as $\left(-\frac{9}{2}, m\right)$.
Hence, (a) is the correct answer.
5. The graph of the linear equation $2 x+3 y=6$ cuts the y-axis at the point
(a) $(2,0)$
(b) $(0,3)$
(c) $(3,0)$
(d) $(0,2)$

Sol. The graph of the linear equation $2 x+3 y=6$ cuts the y-axis at the point where x-coordinate is zero.
Putting $x=0$ in $2 x+3 y=6$, we get
$2(0)+3 y=6 \Rightarrow 3 y=6 \Rightarrow y=6 \div 3=2$
So, $(0,2)$ is the required point.
Hence, (d) is the correct answer.
6. The equation $x=7$ in two variables can be written as
(a) $1 \cdot x+1 \cdot y=7$
(b) $1 . x+0 . y=7$
(c) $0 . x+1 \cdot y=7$
(d) $0 . x+0 \cdot y=7$

Sol. The equation $x=7$ in two variables can be expressed as $1 . x+0 . y=7$. Hence, (b) is the correct answer.
7. Any point on the x-axis is of the form
(a) (x, y)
(b) $(0, y)$
(c) $(x, 0)$
(d) (x, x)

Sol. Any point on the x-axis has its ordinate 0 .
So, any point on the x-axis is of the form $(x, 0)$.
Hence, (c) is the correct answer.
8. Any point on the line $y=x$ is of the form
(a) (a, a)
(b) $(0, a)$
(c) $(a, 0)$
(d) $(a,-a)$

Sol. Any point on the line $y=x$ will have x and y coordinates same.
So, any point on the line $y=x$ is of the form (a, a).
Hence, (a) is the correct answer.
9. The equation of x-axis is of the form
(a) $x=0$
(b) $y=0$
(c) $x+y=0$
(d) $x=y$

Sol. $y=0$ is the equation of x-axis.
Hence, (b) is the correct answer.
10. The graph of $y=6$ is a line
(a) parallel to x-axis at a distance 6 units from the origin
(b) parallel to y-axis at a distance 6 units from the origin
(c) making an intercept 6 on the x-axis.
(d) making an intercept 6 on both the axes.

Sol. The given equation $y=6$ does not contain x. Its graph is a line parallel to x-axis.
So, the graph of $y=6$ is a line parallel to x-axis at a distance 6 units from the origin.
Hence, (a) is correct answer.
11. $x=5, y=2$ is a solution of the linear equation
(a) $x+2 y=7$
(b) $5 x+2 y=7$
(c) $x+y=7$
(d) $5 x+y=7$

Sol. $x=5, y=2$ is a solution of the linear equation $x+y=7$, as $5+2=7$. Hence, (c) is the correct answer.
12. If a linear equation has solutions $(-2,2),(0,0)$ and $(2,-2)$, then it is of the form
(a) $y-x=0$
(b) $x+y=0$
(c) $-2 x+y=0$
(d) $-x+2 y=0$

Sol. The points $(-2,2)$ and $(2,-2)$ have x and y coordinates of opposite signs.
Also, any point on the graph of $x+y=0$
i.e., $y=-x$ will have x and y coordinates of opposite signs. The point $(0,0)$ also satisfies $x+y=0$.
Hence, (b) is the correct answer.
13. The positive solutions of the equation $a x+b y+c=0$ always lie in the
(a) Ist quadrant
(b) 2nd quadrant
(c) 3rd quadrant
(d) 4th quadrant

Sol. Quadrant I consists of all points (x, y) for which the x and y are positive. So, the positive solution of the equation $a x+b y+c=0$ always lie in the Ist quadrant.
Hence, (a) is the correct answer.
14. The graph of the linear equation $2 x+3 y=6$ is a line which meets the x axis at the point
(a) $(0,2)$
(b) $(2,0)$
(c) $(3,0)$
(d) $(0,3)$

Sol. The graph of the linear equation $2 x+3 y=6$ is a line which meets the x-axis at the point where $y=0$.
Now, putting $y=0$ in $2 x+3 y=6$, we get
$2 x+3(0)=6 \Rightarrow 2 x=6 \Rightarrow x=6 \div 2=3$
So, $(3,0)$ is a point on the line $2 x+3 y=6$.
Hence, (c) is the correct answer.
15. The graph of the linear equation $y=x$ passes through the point
(a) $\left(\frac{3}{2}, \frac{-3}{2}\right)$
(b) $\left(0, \frac{3}{2}\right)$
(c) $(1,1)$
(d) $\left(\frac{-1}{2}, \frac{1}{2}\right)$

Sol. We know that any point on the line $y=x$ will have x and y coordinates same.
So, the graph of the linear equation $y=x$ passes through the point $(1,1)$. Hence, (c) is the correct answer.
16. If we multiply or divide both sides of a linear equation with a non-zero number, then the solution of the linear equation:
(a) changes
(b) remains the same
(c) changes in case of multiplication only
(d) changes in case of division only

Sol. If we multiply or divide both sides of a linear equation with a non-zero number, then the solution of the linear equation remains the same.

Hence, (b) is the correct answer.
17. How many linear equations in x and y can be satisfied by $x=1$ and $y=2$?
(a) Only one (b) Two
(c) Infinitely many
(d) Three

Sol. There are infinitely many linear equations which are satisfied by $x=1$ and $y=2$.

For example, a linear equation $x+y=3$ is satisfied by $x=1$ and $y=2$. Others are $y=2 x, y-x=1,2 y-x=3$ etc.

Hence, (c) is the correct answer.
18. The point of the form (a, a) always lies on:
(a) x-axis
(b) y-axis
(c) on the line $y=x$
(d) on the line $x+y=0$

Sol. The point of the form (a, a) have x and y coordinates same. So, the point of the form (a, a) always lies on the line $y=x$.
Hence, (c) is the correct answer.
19. The point of the form $(a,-a)$ always lie on the line
(a) $x=a$
(b) $y=-a$
(c) $y=x$
(d) $x+y=0$

Sol. The point of the form $(a,-a)$ have x and y coordinates of opposite signs.
So, the point of the form $(a,-a)$ always lie on the line $y=-x$, i.e, $x+y=0$. Hence, (d) is the correct answer.

EXERCISE 4.2

Write whether the following statements are true or false. Justify your answer.

1. The point $(0,3)$ lies on the graph of the linear equation $3 x+4 y=12$.

Sol. Substituting $x=0$ and $y=3$ in the equation, we get

$$
3(0)+4(3)=12 \Rightarrow 12=12, \text { which is true. }
$$

The point $(0,3)$ satisfies the equation $3 x+4 y=12$.
Hence, the given statement is true.
2. The graph of the linear equation $x+2 y=7$ passes through the point $(0,7)$.

Sol. Substituting $x=0$ and $y=7$ in the given equation $x+2 y=7$, we get $0+2(7)=7 \Rightarrow 14=7$, which is false.

The point $(0,7)$ does not satisfy the equation.
Hence, the given statement is false.
3. The graph given below represents the linear equation $x+y=0$.

Sol. The given equation is $x+y=0$, i.e., $y=-x$.
Any point on the graph of $y=-x$, will have x and y coordinates of opposite signs.
As the points $(-1,1)$ and $(-3,3)$ have x and y coordinates of opposite signs, so these points satisfy the given equation and the two points determine a unique line, hence the given statement is true.
4. The graph given below represents the linear equation $x=3$. (See fig.)

Sol. We know that the graph of the equation $x=a$ is a line parallel to the y-axis and to the right of y-axis, if $a>0$.
The given statement is true, since the graph is a line parallel to y-axis at a distance of 3 units to the right of it.
5. The coordinates of points in the table:

x	0	1	2	3	4
y	2	3	4	-5	6

represent some of the solutions of the equation $x-y+2=0$.

Sol. The points $(0,2),(1,3),(2,4)$ and $(4,6)$ satisfy the given equation $x-y+2=0$. Each of these points is the solution of the equation $x-y+2=0$. But, the point $(3,-5)$ does not satisfy the given equation as $3-(-5)+2=0$, i.e., $3+5+2=0$ or $10=0$, which is false.
Hence, the given statement is false, since the point $(3,-5)$ does not satisfy the given equation.
6. Every point on the graph of a linear equation in two variables does not represent a solution of the linear equation.
Sol. As every point on the graph of a linear equation in two variables represent a solution of the equation, so the given statement is false.
7. The graph of every linear equation in two variables need not be a line.

Sol. As the graph of a linear equation in two variables is always a line, so the given statement is false.

EXERCISE 4.3

1. Draw the graph of linear equations $y=x$ and $y=-x$ on the same cartesian plane. What do you observe?
Sol. Any point on the graph of $y=x$ will have x and y coordinates same. The line passes through the points $(0,0),(1,1)$ and $(-1,-1)$.
Again, any point on the graph of $y=-x$ will have x and y coordinates of opposite signs. The line passes through the points $(1,-1)$ and $(-1,1)$. Also, $(0,0)$ satisfies $y=-x$.
The graph of linear equations $y=x$ and $y=-x$ on the same cartesian plane is shown in the figure given below.

We observe that the graph of these equations passes through $(0,0)$.
2. Determine the point on the graph of the linear equation $2 x+5 y=19$, whose ordinate is $1 \frac{1}{2}$ times its abscissa.

Sol. Let the coordinates of the point be $(2,3)$.
Now, for $x=2$ and $y=3$,

$$
2 x+5 y=2(2)+5(3)=4+15=19
$$

Therefore, the point $(2,3)$ is a solution of the equation $2 x+5 y=19$. Abscissa of the point is 2 and ordinate is 3 .

Now,

$$
2 \times 1 \frac{1}{2}=2 \times \frac{3}{2}=3
$$

So, ordinate of the point $(2,3)$ is $1 \frac{1}{2}$ times its abscissa.
3. Draw the graph of the equation represented by a straight line which is parallel to the x-axis and at a distance 3 units below it.
Sol. The graph of the equation $y=-3$ is a line parallel to the x-axis and at a distance 3 units below it. So, graph of the equation $y=-3$ is a line parallel to x-axis and passing through the point $(0,-3)$ as shown in the figure given below:

4. Draw the graph of the linear equation whose solutions are represented by the points having the sum of coordinates as 10 units.

Sol. A linear equation whose solutions are represented by the points having the sum of coordinates as 10 units is $x+y=10$.
When $x=0, y=10$ and when $x=10, y=0$.
Now, plot these two points $(0,10)$ and $(10,0)$ on a graph paper and join them to obtain a straight line.
The graph of $x+y=10$ is a straight line as shown in the figure given below.

5. Write the linear equation such that each point on its graph has an ordinate 3 times its abscissa.
Sol. A linear equation such that each point on its graph has an ordinate 3 times its abscissa is $y=3 x$.
6. If the point $(3,4)$ lies on the graph of $3 y=a x+7$, then find the value of a.

Sol. The point $(3,4)$ lies on the graph of $3 y=a x+7$.
Substituting $x=3$ and $y=4$ in the given equation $3 y=a x+7$, we get

$$
\begin{aligned}
& \therefore \quad 3 \times 4=a \times 3+7 \\
& \Rightarrow \quad 12=3 a+7 \quad \Rightarrow 3 a=5 \quad \Rightarrow a=\frac{5}{3}
\end{aligned}
$$

7. How many solution(s) of the equation $2 x+1=x-3$ are there on the
(i) number line
(ii) Cartesian plane?

Sol. (i) The number of solution(s) of the equation $2 x+1=x-3$ which are on the number line is one.
$2 x+1=x-3 \Rightarrow 2 x-x=-3-1 \Rightarrow x=-4$
$\therefore x=-4$ is the solution of the given equation.
(ii) The number of solution(s) of the equation $2 x+1=x-3$ which are on the cartesian plane are infinitely many solutions.
8. Find the solution of the linear equation $x+2 y=8$ which represents a point on
(i) x-axis,
(ii) y-axis.

Sol. We know that the point which lies on x-axis has its ordinate 0 .
Putting $y=0$ in the equation $x+2 y=8$, we get

$$
x+2(0)=8 \Rightarrow x=8
$$

A point which lies on y-axis has its abscissa 0 .
Putting $\quad x=0$ in the equation $x+2 y=8$, we get

$$
0+2 y=8 \Rightarrow y=4
$$

9. For what value of c, the linear equation $2 x+c y=8$ has equal values of x and y for its solution?
Sol. The value of c for which the linear equation $2 x+c y=8$ has equal values of x and y
i.e., $\quad x=y$ for its solution is

$$
\begin{aligned}
& & 2 x+c y & =8 \Rightarrow 2 x+c x=8 \\
& & c x & =8-2 x
\end{aligned} \quad[\because y=x]
$$

10. Let y varies directly as x. If $y=12$ when $x=4$, then write a linear equation.

What is the value of y, when $x=5$?
Sol. y varies directly as x.
$\Rightarrow \quad y \propto x$,
$\therefore \quad y=k x$
Substituting $y=12$ when $x=4$, we get

$$
12=k \times 4 \Rightarrow k=12 \div 4=3
$$

Hence, the required equation is $y=3 x$.
The value of y when $x=5$ is $y=3 \times 5=15$.

EXERCISE 4.4

1. Show that the points $\mathrm{A}(1,2), \mathrm{B}(-1,-16)$ and $\mathrm{C}(0,-7)$ lie on the graph of the linear equation $y=9 x-7$.
Sol. For A(1,2), we have $2=9(1)-7=9-7=2$
For $\mathrm{B}(-1,-16)$, we have $-16=9(-1)-7=-9-7=-16$
For $\mathrm{C}(0,-7)$, we have $-7=9(0)-7=0-7=-7$

We see that the line $y=9 x-7$ is satisfied by the points $\mathrm{A}(1,2), \mathrm{B}(-1,-16)$ and $\mathrm{C}(0,-7)$. Therefore, $\mathrm{A}(1,2), \mathrm{B}(-1,-16)$ and $\mathrm{C}(0,-7)$ are solutions of the linear equation $y=9 x-7$ and therefore, lie on the graph of the linear equation $y=9 x-7$.
2. The following observed values of x and y are thought to satisfy a linear equation.

x	6	-6
y	-2	6

Write the linear equation.
Draw the graph using the values of x, y given in the above table. At what points, the graph of the linear equation cuts the x-axis and the y-axis?
Sol. The linear equation is $2 x+3 y=6$. Both the points $(6,-2)$ and $(-6,6)$ satisfy the given linear equation.
Plot the points $(6,-2)$ and $(-6,6)$ on a graph paper. Now, join these two points and obtain a line. We see that the graph cuts the x-axis at $(3,0)$ and y-axis at $(0,2)$.

3. Draw the graph of the linear equation $3 x+4 y=6$. At what points, the graph cuts the x-axis and y-axis?
Sol. The solutions of the linear equation

$$
3 x+4 y=6
$$

can be expressed in the form of a table as follows by writing the values of y below the corresponding values of x :

x	2	-2	0
y	0	3	1.5

Now, plot the points $(2,0),(-2,3)$ and $(0,1.5)$ on a graph paper. Now, join the points and obtain a line.

We see that the graph cuts the x-axis at $(2,0)$ and y-axis at $(0,1.5)$.
4. The linear equation that converts Fahrenheit (F) to Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is given by the relation:

$$
\mathrm{C}=\frac{5 \mathrm{~F}-160}{9}
$$

(i) If the temperature is $86^{\circ} \mathrm{F}$, what is the temperature in Celsius?
(ii) If the temperature is $35^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit?
(iii) If the temperature is $0^{\circ} \mathrm{C}$, what is the temperature in Fahrenheit and if the temperature is $0^{\circ} \mathrm{F}$, what is the temperature in Celsius?
(iv) What is the numerical value of temperature which is same in both the scales?

Sol.

$$
C=\frac{5 F-160}{9}
$$

(i) Putting $\mathrm{F}=86^{\circ}$, we get $\mathrm{C}=\frac{5(86)-160}{9}=\frac{430-160}{9}=\frac{270}{9}=30^{\circ}$

Hence, the temperature in celsius is $30^{\circ} \mathrm{C}$.
(ii) Putting $\mathrm{C}=35^{\circ}$, we get $\quad 35^{\circ}=\frac{5 \mathrm{~F}-160}{9} \Rightarrow 315^{\circ}=5 \mathrm{~F}-160$
$\Rightarrow \quad 5 \mathrm{~F}=315+160=475$
$\therefore \quad \mathrm{F}=\frac{475}{5}=95^{\circ}$
Hence, the temperature in Fahrenheit is 95 F .
(iii) Putting $\mathrm{C}=0^{\circ}$, we get

$$
\begin{array}{rlrl}
& & 0 & =\frac{5 \mathrm{~F}-160}{9} \Rightarrow 0=5 \mathrm{~F}-160 \\
\Rightarrow & 5 \mathrm{~F} & =160 \\
& \therefore & \mathrm{~F} & =\frac{160}{5}=32^{\circ}
\end{array}
$$

Now, putting $\mathrm{F}=0^{\circ}$, we get

$$
\mathrm{C}=\frac{5 \mathrm{~F}-160}{9} \Rightarrow \mathrm{C}=\frac{5(0)-160}{9}=\left(-\frac{160}{9}\right)^{\circ}
$$

If the temperature is $0^{\circ} \mathrm{C}$, the temperature in Fahrenheit is 32° and if the temperature is 0 F , then the temperature in Celsius is $\left(-\frac{160}{9}\right)^{\circ} \mathrm{C}$.
(iv) Putting $\mathrm{C}=\mathrm{F}$, in the given relation, we get

$$
\begin{array}{ll}
& \mathrm{F}=\frac{5 \mathrm{~F}-160}{9} \Rightarrow 9 \mathrm{~F}=5 \mathrm{~F}-160 \\
\Rightarrow & 4 \mathrm{~F}=-160 \\
\therefore & \mathrm{~F}=\frac{-160}{4}=-40^{\circ}
\end{array}
$$

Hence, the numerical value of the temperature which is same in both the scales is -40 .
The linear equation that converts Kelvin (x) to Fahrenheit (y) is given by the relation:

$$
y=\frac{9}{5}(x-273)+32
$$

5. If the temperature of a liquid can be measured in Kelvin units as $x^{\circ} \mathrm{K}$ or in Fahrenheit units as $y^{\circ} \mathrm{F}$, the relation between the two systems of measurement of temperature is given by the linear equation

$$
y=\frac{9}{5}(x-273)+32
$$

(i) Find the temperature of the liquid in Fahrenheit if the temperature of the liquid is $313^{\circ} \mathrm{K}$.
(ii) If the temperature is $158^{\circ} \mathrm{F}$, then find the temperature in Kelvin.

Sol.

$$
y=\frac{9}{5}(x-273)+32
$$

(i) When the temperature of the liquid is $x=313^{\circ} \mathrm{K}$

$$
y=\frac{9}{5}(313-273)+32=\frac{9}{5} \times 40+32=72^{\circ}+32^{\circ}=104^{\circ} \mathrm{F}
$$

(ii) When the temperature of the liquid is $y=158^{\circ} \mathrm{F}$

$$
\begin{array}{rlrl}
158 & =\frac{9}{5}(x-273)+32 \Rightarrow \frac{9}{5}(x-273)=158-32 \\
\Rightarrow & & x-273 & =126 \times \frac{5}{9}=70 \\
\Rightarrow & x-273 & =70 \Rightarrow x=273+70=343^{\circ} \mathrm{K}
\end{array}
$$

6. The force exerted to pull a cart is directly proportional to the acceleration produced in the body.

Express the statement as a linear equation in two variables and draw the graph of the same by taking the constant mass equal to 6 kg . Read from the graph, the force required when the acceleration produced in the body is
(i) $5 \mathrm{~m} / \mathrm{s}^{2}$
(ii) $6 \mathrm{~m} / \mathrm{s}^{2}$.

Sol. We have $y \propto x \Rightarrow y=m x$
where y denotes the force, x denotes the acceleration and m denotes the constant mass.
Taking $m=6 \mathrm{~kg}$, we get $y=6 x$.
Now, we form a table as follows by writing the values of y below the corresponding values of x.

x	0	1	2
y	0	6	12

Plot the points $(0,0),(1,6)$ and $(2,12)$ on a graph paper and join any two points and obtain a line.

